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Abstract: An analytical solution for describing the non-Darcy displacement of a Newtonian fluid by a non-Newtonian fluid in
porous media has been developed. The two-phase non-Darcy flow is described using the Barree-Conway model under multi-
phase conditions. A power-law non-Newtonian fluid, whose viscosity is a function of the flow potential gradient and the phase
saturation, is considered. The analytical solution is similar to the Buckley-Leverett theoretical solution, which can be regarded
as an extension of the Buckley-Leverett theory to the non-Darcy flow of non-Newtonian fluids. The analytical results revel how
non-Darcy displacement by a non-Newtonian fluid is controlled not only by relative permeabilities but also by non-Darcy flow
coefficients as well as non-Newtonian rheological constitutive parameters and injection rates. The comparison among Darcy,
Forchheimer and Barree-Conway models is also discussed. For application, the analytical solution is then applied to verify a
numerical simulator for modeling multi-phase non-Darcy flow of non-Newtonian fluids.

Keywords: Non-Newtonian fluid, non-darcy flow, barree-conway model, buckley-leverett type solution, two-phase immiscible
flow.

Citation: Huang, Z., Zhang, X., Yao, J., et al. Non-Darcy displacement by a non-Newtonian fluid in porous media according to
the Barree-Conway model. Adv. Geo-Energy Res. 2017, 1(2): 74-85, doi: 10.26804/ager.2017.02.02.

1. Introduction
Flow of non-Newtonian fluids in porous media is involved

in a wide range of practical applications, such as the pene-
tration of glue in porous substrates, the injection of cement
in soils, filtration of polymer solutions, etc. (Sochi, 2010).
One of the important applications is the enhanced oil recovery
(EOR) process in petroleum engineering, in which many non-
Newtonian fluids (jel, polymers, foams, emulsions, etc.) are
usually used (Wu et al., 1991; Alsofi and Blunt, 2010; Rossen
et al., 2011; Li and Delshad, 2014). Non-Newtonian fluids in
porous media exhibit a nonlinear behavior, which does not
exist in the flow of Newtonian fluids (Uscilowska, 2008).

Darcy’s law has been applied widely to study flow and
transport behaviors through porous media (Darcy, 1856). How-
ever, the relationship between pressure (or potential) gradient
and flow velocity at high flow rates cannot be modelled by
Darcy’s law any more (Spivey et al., 2004; Bear, 2013). There
is more evidence that the non-Darcy flow at high flow rates
occurs in many subsurface, engineering porous and biological

porous flow systems (Schfer and Lohnert, 2006; Vafai, 2010;
Wu et al., 2011). Motivated by its importance in practical
applications and scientific interest, understandings about the
flow behavior at high flow rates have been developed by means
of experimental and numerical analysis (Evans et al., 1987;
Vincent et al., 1999; Pereira et al., 2006; Huang and Ayoub,
2008; Mayaud et al., 2014; Ye et al., 2014). The Forchheimer
equation has been used extensively to describe such high
velocity flow (Ergun, 1952; Forchheimer, 1901; Wu, 2001,
2002), which adds a quadratic flow term to account for high
velocity inertial effects. However, the Forchheimer equation
has been found to be inadequate for modeling the non-Darcy
phenomena over the entire flow velocity range (Barree and
Conway, 2004; Barree and Conway, 2009; Ranjith and Viete,
2011; Zhang and Yang, 2014a, 2014b).

Recently, Barree and Conway (2004, 2009) developed
a new model for describing the non-Darcy flow based on
experimental and field data. The further laboratory researches
and analyses (Lopez-Hernandez, 2007; Lai et al., 2012) in-
dicate that the Barree-Conway model can describe the non-
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Darcy flow behavior from low to high flow rates. This model
has been applied to the single- and multi-phase non-Darcy
flow analysis in porous media (Al-Otaibi and Wu, 2010;
Wu et al., 2011). However, all the existing researches and
development are focused on the Newtonian fluids. To our best
of knowledge, there are no analytical and numerical solutions
available for multi-phase non-Darcy flow of non-Newtonian
fluids according to the Barree-Conway model.

In this paper, an analytical solution describing the non-
Darcy displacement of a non-Newtonian fluid by a non-
Newtonian fluid in porous media has been developed for
one-dimensional flow based on the Barree-Conway model. A
power-law non-Newtonian fluid is considered in this work.
The analysis approach follows upon the classical theory of
Buckley and Leverett (Buckley and Leverett, 1942) and our
previous works for multiphase non-Newtonian fluid flow and
displacement in porous media (Wu et al., 1991, 2011). A
general procedure for evaluating the non-Darcy behavior of
non-Newtonian fluid displacement is developed, based on the
analytical solution, which is similar to the graphic method used
in Wu et al. (1991). This work can be regarded as an extension
of the Buckley-Leverett theory to the non-Darcy flow of non-
Newtonian fluids in porous media.

2. Mathematical model
Consider the flow of two immiscible fluids (one Newtonian

fluid and one non-Newtonian fluid) in a homogeneous porous
medium. Assume that no interphase mass transfer occurs
between the two fluids and ignore dispersion and adsorption
effects. The governing equation for fluid is then given by the
mass conservation equation,

−5·(ρlυl)+ql =
∂

∂ t
(ρlφSt) (1)

where ρl is the density of fluid l (l = ne for the Newtonian
fluid and l = nn for the non-Newtonian fluid), vl is the flow
velocity of fluid l, ql is the sink/source term of phase l per
unit volume of porous media, Sl is the saturation of fluid l, t
is time, and φ is the effective porosity of porous media.

The flow velocity (volumetric flow rate) in non-Darcy flow
for each fluid and its dependence on other parameters need to
be defined before the governing Eq. (1) can be solved. On the
basis of experimental data and theoretical analyses (Lopez-
Hernandez, 2007; Wu et al., 2011; Lai et al., 2012), the multi-
phase extension of the Barree-Conway model is used in this
work, given by:

−5Φl =
µlvl

kdkrl(kmr +
(1−kmr)µlSlτ
µlSlτ+ρl |vl |

)
(2)

where kd is the constant Darcy or absolute permeability, krl is
the relative permeability to fluid l, µl is the dynamic viscosity
of fluid l, kmr is the minimum permeability ratio at high rate,
relative to Darcy permeability, τ is the inverse of characteristic
length, and 5Φl is the potential gradient, defined as:

5Φl =5pl−ρlg (3)

here g is the gravity acceleration vector.
For a power-law non-Newtonian fluid, the relationship of

shear stress σ and shear rate γ can be described as follows:

σ = Hγ
n (4)

where n and H are parameters, called power-law index and
consistency of the power-law fluid, respectively. The power-
law index is a dimensionless constant, and for pseudo-plastic
or shear thinning fluids ranges over 0<n<1. The consistency
H has units (Pa·sn), depending on the index n. For a Newtonian
fluid, n = 1 and the viscosity equals the constant H. Apparent
viscosity for a power-law fluid is defined as:

µapp = Hγ
n−1 (5)

For single-phase flow, the modified Blake-Kozeny equation
for one-dimensional flow of power-law fluids gives (Bird et al.,
2007):

v = [
k

µe f f
(−∂ p

∂x
)]

1
n (6)

where effective viscosity is defined as:

µe f f =
H
12

(9+
3
n
)n(150kφ)(

1−n
2 ) (7)

Eq. (6) is the usual flow model used in engineering treat-
ment. Recently, Mikelic (1997) used homogenization theory
to derive a nonlinear, one-dimensional power-like law, which
is identical to Eq. (6). However, Mikelic pointed out that this
law could be extended to the N-dimensional (N > 1), from an
engineering point of view (Mikelic, 1997).

As aforementioned in our previous work (Wu et al., 1991),
for the two-phase flow case, we can extend Eq. (7) by replacing
k by kkrl and φ by φ(Snn−Snnr) to obtain:

µe f f =
H
12

(9+
3
n
)n[150kkrlφ(Snn−Snnr)]

(1−n)/2 (8)

In this work, we relate the flow velocity to the pressure
gradient as is normally done in multiple-phase extension of
non-Darcy flow, with all of the nonlinearities combined into an
equivalent non-Newtonian viscosity (Wu et al., 1991). Then,
we write:

v =−kkrnn

µnn

∂ p
∂x

(9)

This requires the volumetric flux be equal to Eq. (6),
leading to:

µnn(Snn,
∂ p
∂x

) = µe f f [
kkrnn

µe f f
(−∂ p

∂x
)]

1
n (10)

It should be noted that the Eqs. (9) and (10) are valid for
Darcy flow case. However, the recent research results (Tosco
et al., 2013) indicate that the inertial effect and coefficients
are demonstrated to be independent of the viscous properties
of the fluids, and the above Eq. (10) may be directly used in
Eq. (2).
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For capillary pressure and saturation, we still use:

pc(Snn) = pne− pnn (11)

Sne +Snn = 1 (12)

3. Analytical solution
For the derivation of the analytical solution, we assume

that the following Buckley-Leverett flow conditions (Wu et al.,
2011): (1) Both fluids and the porous medium are incompress-
ible; (2) Capillary pressure gradient and gravity segregation
effect are negligible (i.e., stable displacement exists near the
displacement front); (3) One-dimensional flow and displace-
ment is along the x coordinate of a length L of linear flow
system with a constant cross-sectional area A.

Among these assumptions, incompressibility of fluids and
porous media is critical to derive the Buckley-Leverett type
solution. This assumption provides a good approximation to
displacement processes of two liquids (e.g., oil and water)
through porous media, because of the small compressibility of
the two fluids as well as rock. For gas and liquid displacement,
this assumption may pose certain limitation to the resulting
solution, when large pressure gradients build up in a flow
system. In many cases, however, this assumption may still
provide acceptable approximations because the viscosity of
the gas phase in normal reservoir conditions is 2 orders of
magnitude lower than the liquid phase. This tends to prevent
high-pressure gradients from building up, as in the case of the
Buckley-Leverett solution, which was also derived for oil and
gas displacement originally.

Considering a one-dimensional problem and ignoring the
sink/source term, Eq. (1) can then be written as follows:

−∂vl

∂x
= φ

∂Sl

∂ t
(13)

where vl is the x-component of seepage velocity or volumetric
flow rate (m/s) per unit area of porous media for fluid l. For
the one-dimensional flow, vl can be determined by Eq. (2):

vl =−
1

2ρl µl
[µ2

l Slτ +
∂Φl

∂x
kdkmrkrlρl ]+

1
2ρl µl

·√
[µ2

l Slτ +
∂Φl

∂x
kdkmrkrlρl ]2−4µ2

l Slτρlkdkrl
∂Φl

∂x

(14)

where ∂

∂x is the component of the pressure gradient along
x-coordinate, the same for the Newtonian or non-Newtonian
fluids since we neglect the capillary gradient term in this work,

Fig. 1. Schematic of displacement of a Newtonian fluid by a non-Newtonian
fluid.

g is the gravitational acceleration constant, and α is the angle
between the horizontal plane and the flow direction (i.e., the
x-coordinate), as illustrated in Fig. 1.

To complete the mathematical model of the physical prob-
lem, the initial and boundary conditions must be specified. For
simplicity in derivation, the system is initially assumed to be
uniformly saturated with both Newtonian and non-Newtonian
fluids. The non-Newtonian phase is at its residual saturation,
and a Newtonian fluid is at its maximum saturation in the
system as follows:

Sne(x, t = 0) = 1−Snnr (15)

where Snnr is the residual non-Newtonian fluid saturation.
Non-Newtonian fluid, such as polymer solution, is continu-
ously being injected at a rate, q(t). So, the boundary conditions
at the inlet are:

vnn(x = 0, t) =
q(t)
A

, vne(x = 0, t) = 0 (16)

Following the work of Wu et al.(2011), the fractional flow
concept is used to simplify the governing Eq. (13) in terms of
saturation only. The fractional flow is defined as the volume
fraction of the phase flowing at a location and time t to the
total volume of the flowing phases (Bear, 2013), which can be
written as:

fl =
vl

vnn + vne
=

vl

v(t)
(17)

From the definition, we have fnn + fne = 1. Eqs. (10) and
(17) indicate that the fractional flow of the displacing non-
Newtonian fluid, fnn is generally a function of both saturation
and potential gradient. Under the usual simplifications made in
the Buckley-Leverett problem, however, the potential gradient
is related uniquely to saturation as follows:

. . .
q(t)
A

+
1

2ρnnµnn
[µ2

nnSnnτ +
∂Φnn

∂x
kdkmrkrnnρnn]−

1
2ρnnµnn

√
[µ2

nnSnnτ +
∂Φnn

∂x
kdkmrkrnnρnn]2−4µ2

nnSnnτρnnkdkrnn
∂Φnn

∂x

+
1

2ρneµne
[µ2

nnSnnτ +
∂Φnn

∂x
kdkmrkrnnρnn]−

1
2ρneµne

√
[µ2

neSneτ +
∂Φne

∂x
kdkmrkrneρne]2−4µ2

neSneτρnekdkrne
∂Φne

∂x
= 0

(18)
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Therefore, the fractional-flow function in Eq. (17) ends up
being a function of saturation only, and the Welge graphic
method (Welge, 1952) can be applied for evaluation of non-
Darcy displacement of immiscible fluids. For a particular
saturation of the non-Newtonian fluid, Snn, the corresponding
flow potential gradient for the non-Newtonian fluid can be
derived by introducing Eq. (18). The apparent viscosities for
the non-Newtonian fluid are determined by use of Eq. (10),
and then the fractional-flow curve can be calculated from Eq.
(17).

The governing equation, Eq. (13), subject to the boundary
and initial conditions described in Eqs. (15) and (16), can be
solved as follows:

dx
dt
|Snn =

q(t)
Aφ

∂ fnn

∂Snn
|t (19)

This is the frontal advance equation for the non-Darcy
displacement of a Newtonian fluid by a non-Newtonian fluid,
and it has the same form as the Buckley-Leverett equation.
However, the dependence of the fractional flow fnn for the non-
Darcy displacement on saturation is different. The fractional
flow, fnn, is related to saturation not only through the relative
permeability functions, but also through the non-Darcy flow
relation and non-Newtonian rheology constitutes, as described
by Eqs. (2) and (10).

For a given time and a given injection rate, Eq. (19)
indicates that a particular non-Newtonian fluid saturation
profile propagates through the porous medium at a constant
velocity. As in the Buckley-Leverett theory, the saturation for
a vanishing capillary pressure gradient will, in general, become
a multiple-valued function of distance near the displacement
front (Cardwell, 1959). Eq. (19) will then fail to describe the
velocity of the shock saturation front since ∂ fnn/∂Snn does
not exist on the front, because of the discontinuity in Snn at
that point. Consideration of mass balance across the shock
front, Sheldon and Cardwell (1959) provides the velocity of
the front:

dx
dt
|Snn f =

q(t)
Aφ

f+nn− f−nn

S+nn−S−nn
(20)

where Snn f is the shock front saturation of the displacing
non-Newtonian fluid. The plus and minus superscripts refer
to values immediately ahead of and behind the shock front,
respectively.

The location x of any saturation Snn traveling from the inlet
at time t can be determined by integrating Eq. (19) with respect
to time, which leads to:

xSnn =
1

Aφ

∫ t

0
q(t)

∂ fnn

∂Snn
|Snn dt (21)

For a given injection rate, q(t), the derivative ∂ fnn/∂Snn
within the integral is also a time-dependent function. There-
fore, the solution Eq. (21) for non-Darcy displacement of non-
Newtonian fluid differs from the Buckley-Leverett solution.
Considering a constant injection rate, then Eq. (21) becomes:

xSnn =
q(t)
Aφ

∂ fnn

∂Snn
|Snn (22)

where q is the constant injection rate, and q(t) is the cumula-
tive volume of the injected fluid.

For given x and t, using Eq. (22) will result in a multiple-
valued saturation distribution, which can be handled by a mass
balance calculation, as in the Buckley-Leverett solution. An
alternative Welge graphic method (Welge, 1952) can be shown
to apply to calculating the above solution in this case. The only
additional step in applying this method is to take into account
the contribution of the pressure gradient dependence on the
non-Newtonian viscosity and non-Darcy coefficient, using a
fractional flow curve. Then the non-Newtonian fluid saturation
at the shock front can be obtained by:

∂ fnn

∂Snn
|Snn f =

fnn(Snn f )− fnn(Snnr)

Snn f −Snnr
(23)

Then, the complete saturation profile can be determined
using Eq. (22).

4. Results and discussion
In this section, the analytical solution presented above

is used to give us some insight into non-Darcy flow and
displacement phenomena of non-Newtonian fluids. Initially,
the one-dimensional linear porous medium system is assumed
to be saturated with only a Newtonian fluid, and a non-
Newtonian fluid is injected at a constant volumetric rate at the
inlet, x = 0, starting from t = 0. The relative permeabilities
are given as power-law functions of saturation similar to the
Brooks-Corey curves (Alpak et al., 1999):

krnn = krnn,max(
Snn−Snnr

1−Snnr−Snnr
)nnn (24)

krne = krne,max(
1−Snn−Sner

1−Snnr−Sner
)nne (25)

where krl,max is the maximum relative permeability of fluid l,
nl is the exponents of fluid l.

4.1 Effects of non-Darcy parameters

For a given constant injection rate, the solution Eq. (22)
shows that non-Darcy non-Newtonian fluid displacement in a
porous medium is characterized not only by relative permeabil-
ity data, as in Buckley-Leverett displacement, but also by non-
Darcy flow coefficients and non-Newtonian fluid parameters.
Using the analytical solution, some fundamental aspects of
non-Darcy displacement will be shown. Fig. 2 shows the
relative permeability curves. The fluid and rock properties are
summarized in Table 1.

Fig. 3, obtained by using Eq. (18), shows that pressure
gradients change significantly as a function of saturation for
different non-Darcy parameter, τ . At both high and low values
for the non-Newtonian fluid saturation, the pressure gradients
become relatively small, because the total flow resistance
decreases as the flow is close to single-phase flow condition.
In addition, Fig. 3 indicates that as the non-Darcy flow
parameter τ decreases, the pressure gradient increases at the
same saturation value under the same injection rate due to a
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Table 1. Parameters for the non-Darcy displacement examples.

Parameters Value Unit

Porosity, φ 0.3 [-]

Absolute permeability, kd 9.869×10−12 [m2]

Minimum permeability, kmr 0.001 [-]

Inverse of characteristic length, τ 103 [1/m]

Cross-section area, A 1.0 [m2]

Injection rate, q 1.0×10−3 [1/m]

Injection time, t 0.1 [hours]

Viscosity of Newtonian fluid, µne 5.0 [mPa∗ s]

Power-law index, n 0.6 [-]

Consistency of power-law fluid, H 0.01 [Pa∗ sn]

Residual fluid saturations, Sner ,Snnr 0.2, 0.2 [-]

Power index of relative permeability function, nne,nnn 2.0, 2.0 [-]

Maximum relative permeability of fluids, krne,max, krnn,max 0.75, 0.75 [-]

Density of Newtonian fluid, ρne 800 [kg/m3]

Density of non-Newtonian fluid, ρnn 1,000 [kg/m3]

Directional angle, α 0 [rad]

Fig. 2. Relative permeability curves.

larger non-Darcy flow term effect. However, Eq. (2) indicates
that the pressure (or potential) gradient is a comprehensive
function of non-Darcy parameters, τ and kmr, and non-
Newtonian fluid viscosity µnn, which is also a function of
pressure gradient.

The resulting fractional flow curves and their derivatives
with different non-Darcy parameter τ are shown in Fig. 4.
Note that fractional flow curves change with the non-Darcy
flow parameter τ due to the change in pressure gradient under
the same saturation. Non-Newtonian fluid saturation profiles
of displacement after 0.1-hours injection period are plotted in
Fig. 5(a). In terms of higher sweeping efficiency or shorter
displacement front travel distance, a smaller non-Darcy flow

Fig. 3. Pressure gradients with different parameter, τ .

Fig. 4. Fractional flow curves and their derivatives with respect to non-
Newtonian fluid saturation for different non-Darcy flow parameter τ .
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(a) (b)

Fig. 5. (a) Non-Newtonian Saturation profiles with different model parameter τ after 0.1-hours injection; (b) effects of the non-Darcy flow parameter τ on
non-Newtonian fluid apparent viscosity.

Fig. 6. Fractional flow curves and their derivatives with respect to non-
Newtonian fluid saturation for different non-Darcy flow constant kmr .

parameter τ leads to higher non-Newtonian fluid displacing
flow rates. This results in a better displacement efficiency:
more Newtonian fluid is displaced from the swept zone.
Moreover, the displacement becomes the Buckley-Leverett
process as the non-Darcy flow parameter, τ , becomes large.
The effect of non-Darcy flow parameter τ on non-Newtonian
fluid apparent viscosity is shown in Fig. 5(b), in which
a constant power index (n = 0.6) of non-Newtonian fluid
viscosity is used. Fig. 5(b) indicates that non-Newtonian fluid
apparent viscosity may be very sensitive to non-Darcy flow
parameter,τ .

Figs. 6 and 7 present results for sensitivity of non-Darcy
parameter kmr. The resulting fractional flow curves and their
derivatives with different non-Darcy parameter kmr are shown
in Fig. 6. As shown in the Figs. 4 and 6, fractional flow curves
change also with the non-Darcy model parameters under the
same saturation. Fig. 7(a) presents the non-Newtonian fluid
saturation profiles of non-Darcy displacement with varying
kmr. It shows that a smaller non-Darcy flow parameter kmr
leads to higher non-Newtonian fluid displacing flow rates

because of a larger non-Darcy flow term effect. Fig. 7(b)
shows the effect of non-Darcy flow parameter kmr on non-
Newtonian fluid apparent viscosity. Figs. 3∼7 also indicate
that the Barree-Conway model results are more sensitive to
the parameter τ than kmr, from the parameters selected.

4.2 Effects of injection rates

Fig. 8, obtained using Eqs. (14) and (17), shows that both all
the fractional flow and its derivatives change significantly with
varying injection rates for horizontal displacement system. The
fluid and rock properties are the same as Table 1, except the
non-Darcy flow parameters τ and kmr. The effects of injection
rates on non-Darcy displacement is shown in Fig. 9(a), in
which constant non-Darcy flow parameters, τ = 500 and kmr =
0.001, are used with all three injection rates. Fig. 9(a) indicates
that non-Darcy displacements of non-Newtonian fluid are also
sensitive to injection rates. This rate-dependent displacement
behavior is entirely different from a Buckley-Leverett or Darcy
displacement, because the latter is independent of injection
rates.

Under non-Darcy flow condition, Fig. 9(a) shows that for the
same volume of water injected with the three injection rates,
saturation profiles in the system are very different. Larger
injection rates display better sweeping efficiency overall. This
is because higher injection rates create larger flow resistance to
the displacing phase due to the non-Darcy term, and as a result
this will lower flow velocity of the displacing phase, relative
to that of the displaced phase, resulting in a better sweeping
performance. Fig. 9(b) indicates the apparent viscosity of non-
Newtonian fluid is sensitive to the injection rate.

4.3 Effects of non-Newtonian fluid parameters

There are two parameters that characterize the flow behavior
of a power-law fluid, the exponential index, n, and consistency



80 Huang, Z., et al. Adv. Geo-Energy Res. 2017, 1(2): 74-85

(a) (b)

Fig. 7. (a) Non-Newtonian Saturation profiles with different model parameter kmr after 0.1-hours injection; (b) effects of the non-Darcy flow parameter kmr
on non-Newtonian fluid apparent viscosity.

(a) (b)

Fig. 9. (a) Saturation profiles with different injection rates after injection of 0.36 m3 non-Newtonian fluid; (b) effects of the injection rates on non-Newtonian
fluid apparent viscosity.

parameter, H. For a pseudoplastic fluid, 0<n<1. If n = 1, the
fluid is Newtonian. The effect of the power-law index, n, on
horizontal displacement can be quite significant. Fig. 10(a)
shows that the pressure gradients are changed largely as a
function of saturation for different n. The apparent viscosities
of several non-Newtonian fluids are given in Fig. 10(b), and
the resulting fractional flow curves are shown in Fig. 11. In all
these analysis, constant non-Darcy flow parameters, τ = 500
and kmr = 0.001, and a constant injection rate, q = 1.0×10−3

m3/s, are used with all different power-law indexes. The other
fluid and rock parameters have been listed in Table 1.

Saturation profiles after 0.1-hours injection period in the
system are plotted in Fig. 12. Note the significant differences
in sweep efficiency. Since the power-law index, n is usually
determined from an experiment or from well test analysis,

Fig. 8. Fractional flow curves and their derivatives with respect to non-
Newtonian fluid saturation for different injection rates.
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(a) (b)

Fig. 10. Effects of the power-law index on pressure gradients (a); Effects of the power-law index on apparent viscosity of non-Newtonian fluid (b).

Fig. 11. Effects of the power-law index on non-Newtonian fluid fractional
flow curve and its derivatives.

Fig. 12. Effects of the power-law index on non-Newtonian fluid saturation
profiles.

some errors cannot be avoided in determining the value of
n because of the extreme sensitivity of the core saturation
distribution to n. The sensitivity of the displacement behavior

to the power-index n suggests that in determining the index
n, it may be helpful to match experimental saturation profiles
using the analytical solution.

4.4 Comparison between Barree-Conway and Forch-
heimer models

The equivalent Forchheimer non-Darcy parameters can be
evaluated from the Barree-Conway model input parameters
(Wu et al., 2011). A multiphase extension of the Forchheimer
model can be described as follows (Wu, 2001):

−5Φl =
µl

kdkrl
vl +βlρlvl |vl (26)

where βl is the non-Darcy flow parameter for fluid l under
multi-phase flow conditions, and it is given as:

βl(Sl ,krl) =
Cβ

(kdkrl)5/4[φ(Sl−Slr)]3/4 (27)

Fig. 13. Comparison of the results from Darcy, Forchheimer, and Barree-
Conway models.
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Table 2. Parameters for the non-Darcy displacement comparison example.

Parameters Value Unit

Porosity, φ 0.3 [-]

Absolute permeability, kd 9.869×10−12 [m2]

Minimum permeability, kmr 0.001 [-]

Inverse of characteristic length, τ 5×102 [1/m]

Cross-section area, A 1.0 [m2]

Injection rate, q 1.0×10−3 [m3/s]

Injection time, t 0.1 [hours]

Viscosity of Newtonian fluid, µne 5.0 [mPa· s]

Power-law index, n 0.6 [-]

Consistency of power-law fluid, H 0.01 [Pa · sn]

Equivalent non-Darcy flow constant, Cβ 1.435×10−6 [m3/2]

Density of Newtonian fluid, ρne 800 [kg/m3]

Density of non-Newtonian fluid, ρnn 1,000 [kg/m3]

Directional angle, α 0 [rad]

where Cβ is a non-Darcy flow constant with a unit of meters3/2

if converted to SI units. From Eqs. (2) and (27), we can
solve non-Darcy parameter βl in term of Barree-Conway input
parameters:

βl =
µl(1− kmr)

kdkrl(kmrρl |vl |+µlSlτ)
(28)

And then, we can calculate the non-Darcy constant, Cβ ,
according to the single-phase case in Eqs. (27) and (28), which
is given by:

Cβ =
µl(1− kmr)(kd)

5/4φ 3/4

kdkrl(kmrρl |vl |+µlτ)
(29)

Fig. 13 shows a comparison among Darcy, Forchheimer
non-Darcy, and Barree-Conway non-Darcy models. The cor-
responding calculation parameters are summarized in Table 2.
The relative permeability parameters are the same as Table
1. Note that to compare the results from the two non-Darcy
models, equivalent non-Darcy flow parameter Cβ are used for
the Forchheimer and Barree-Conway models. As shown in Fig.
13, the two non-Darcy models, when using the equivalent
non-Darcy flow parameters, present similar behavior where
non-Darcy effect decreases the frontal velocity, and the slight
discrepancy between the two non-Darcy models appear to be
minimal. Actually, the equivalent non-Darcy flow parameter
Cβ should also be a function of saturation according to Eqs.
(27) and (28). However, the non-Darcy flow parameter Cβ is
constant in Forchheimer model. This is the main cause of slight
difference between Forchheimer and Barree-Conway models’
results. Nevertheless, the difference between the non-Darcy
and Darcy displacement seems large.

4.5 Verification of numerical model

In this section, the analytical solutions are used to examine

the validity of the numerical method implemented in a general
purpose, three-phase reservoir simulator, the MSFLOW code
(Wu, 1998, 2015), for modeling multiphase non-Newtonian
flow and displacement processes according to the Barree-
Conway model, i.e., Eq. (2) (Wu et al., 2011). To reduce
the effects of discretization on numerical simulation results,
very fine, uniform mesh spacing (4x = 0.01 m) is chosen.
A one-dimensional 5-m linear domain is discretized into 500
one-dimensional grid blocks.

The flow description and the parameters for this problem
are illustrated in Table 3. The relative permeability parameters
are the same as Table 1. In the numerical simulation the
non-Darcy flow flux, Eq. (14), is estimated using a full
upstream weighting scheme as that for the relative perme-
ability function. The comparison between the numerical and
analytical solutions is shown in Fig. 14. Fig. 14 indicates
that the numerical results are in excellent agreement with
the analytical solutions of the non-Darcy displacement for
the entire non-Newtonian phase sweeping zone. Except at the
shock front, the numerical solutions deviate only slightly from
the analytical solutions, resulting from a typical smearing front
phenomenon of numerical dispersion effects when matching
the Buckley-Leverett solution using numerical results (Aziz
and Settari, 1979). Considering the complexity introduced
when non-Newtonian fluid non-Darcy flow is involved in a
multi-phase flow problem, the results from Fig. 14 provide
a very encouraging indication that our numerical model is
correct in describing the multi-phase immiscible displacement
of non-Darcy and non-Newtonian fluid flow in porous media.

5. Conclusions
An analytical solution for describing the non-Darcy dis-

placement of a Newtonian fluid by a non-Newtonian fluid
through porous media, according to the Barree-Conway model
has been developed. A general power-law viscosity function
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(a) Numerical test 1 (b) Numerical test 2

Fig. 14. Comparison between analytical and numerical solutions after 10 hours of injection, the corresponding fluid and rock properties are listed in Table 2.

Table 3. Fluid and rock properties for comparing analytical and numerical solutions.

Parameters Numerical test 1 Numerical test 2 Unit

Porosity, φ 0.4 0.3 [-]

Absolute permeability, kd 9.869×10−13 9.869×10−13 [m2]

Minimum permeability, kmr 0.1 0.1 [-]

Inverse of characteristic length, τ 0.5×103 1.0×103 [1/m]

Cross-section area, A 1.0 1.0 [m2]

Injection rate, q 1.0×10−5 1.0×10−5 [m3/s]

Injection time, t 10.0 10.0 [hours]

Viscosity of Newtonian fluid, µne 6.0 5.0 [mPa· s]

Power-law index, n 0.8 0.6 [-]

Consistency of power-law fluid, H 0.01 0.01 [Pa · sn]

Density of Newtonian fluid, ρne 800 800 [kg/m3]

Density of non-Newtonian fluid, ρnn 1,000 1,000 [kg/m3]

Directional angle, α 0 0 [rad]

for a non-Newtonian fluid is proposed and used in the solution,
which relates non-Newtonian fluid viscosity to the local pres-
sure (or potential) gradient and saturation. The two-phase non-
Darcy flow is described using the Barree-Conway model. The
analytical solution, derived in this work, is based on the same
assumptions as those used for the Buckley-Leverett solution.

The analytical results are used to obtain some insight
into the physics of non-Darcy displacement involving non-
Newtonian fluid. The solution reveals that non-Darcy dis-
placement by a non-Newtonian fluid is a more complicated
process than the Darcy displacement described by the Buckley-
Leverett solution and the non-Darcy displacement of a New-
tonian fluid. Two-phase non-Darcy flow and displacement are
controlled not only by relative permeability curves, such as in
Darcy displacement, but also by non-Darcy flow parameters
as well as non-Newtonian rheological constitutive and injec-

tion rates. The comparison between Forchheimer and Barree-
Conway models indicates a similar flow behavior observed,
which is very different from prediction of Darcy model.

Furthermore, the analysis procedure in this work can be
easily extended to other one-dimensional geometries, such as
radial or composite systems. In addition, the analytical solution
is also applicable to displacement processes involving other
non-Darcy flow models and other non-Newtonian rheological
constitutive models, such as Bingham-, Cross- and Carreau-
type fluids.

Acknowledgments
This work was supported by the Foundation CMG and This

work was supported by National Nature Science Foundation of
China (Grant No.51404292), the Fundamental Research Funds



84 Huang, Z., et al. Adv. Geo-Energy Res. 2017, 1(2): 74-85

for the Central Universities (15CX05037A), National Science
and Technology Major Project (2016ZX05060-010).

Open Access This article is distributed under the terms and conditions of
the Creative Commons Attribution (CC BY-NC-ND) license, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

References
Al-Otaibi, A.M., Wu, Y.S. Transient behavior and analysis

of non-Darcy flow in porous and fractured reservoirs
according to the Barree and Conway model. Paper
Presented at SPE Western Regional Meeting, Anaheim,
California, USA, 27-29 May, 2010.

Alpak, F.O., Lake, L.W., Embid, S.M. Validation of a modified
Carman-Kozeny equation to model two-phase relative
permeabilities. Paper Presented at SPE Annual Technical
Conference and Exhibition, Houston, Texas, 3-6 October,
1999.

Alsofi, A.M., Blunt, M.J. Streamline-based simulation of non-
Newtonian polymer flooding. SPE J. 2010, 15(4): 895-
905.

Aziz, K., Settari, A. Petroleum Reservoir Simulation. London,
Chapman & Hall, 1979.

Barree, R., Conway, M. Beyond beta factors: A complete
model for Darcy Forchheimer and trans-Forchheimer
flow in porous media. J. Pet. Technol. 2005, 57(8): 73.

Barree, R.D., Conway, M. Multiphase non-Darcy flow in
proppant packs. SPE Prod. Oper. 2009, 24(2): 257-268.

Bear, J. Dynamics of Fluids in Porous Media. USA, Courier
Dover Publications, 2013.

Bird, R.B., Stewart, W.E., Lightfoot, E.N. Transport Phenom-
ena. New Jersey, USA, John Wiley & Sons, 2007.

Buckley, S., Leverett, M. Mechanism of fluid displacement in
sands. Trans. AIME 1942, 146(1): 107-116.

Cardwell, W. The meaning of the triple value in noncapillary
Buckley-Leverett theory. Paper Presented at the 2009
Rocky Mountain Petroleum Technology Conference,
Denver, CO, 14-16 April, 2009.

Darcy, H. Les Fontaines Publiques De La Ville De Dijon.
Paris, UK, Victor Dalmont, 1856.

Ergun, S. Fluid flow through packed columns. Chem. Eng.
Prog. 1952, 48: 89-94.

Evans, R., Hudson, C., Greenlee, J. The effect of an immobile
liquid saturation on the non-Darcy flow coefficient in
porous media. SPE Prod. Eng. 1987, 2(4): 331-338.

Forchheimer, P. Wasserbewegung durch boden. Zeit. Ver. Deut.
Ing. 1901, 45: 1782-1788.

Huang, H., Ayoub, J.A. Applicability of the Forchheimer
equation for non-Darcy flow in porous media. SPE J.
2008, 13(31): 112-122.

Lai, B., Miskimins, J.L., Wu, Y.S., et al. Non-Darcy porous-
media flow according to the Barree and Conway model:
Laboratory and numerical-modeling studies. SPE J. 2012,
17(1): 70-79.

Li, Z., Delshad, M. Development of an analytical injectivity
model for non-Newtonian polymer solutions. SPE J.
2014, 19(3): 381-389.

Lopez-Hernandez, H.D. Experimental analysis and macro-
scopic and pore-level flow simulations to compare non-
Darcy flow models in porous media. Golden, CO, USA,
Colorado School of Mines, 2007.

Mayaud, C., Walker, P., Hergarten, S., et al. Nonlinear flow
process: A new package to compute nonlinear flow in
MODFLOW. Groundwater 2015, 53(4): 645-650.

Mikelic, A. Non-Newtonian flow, in Homogenization and
Porous Media, edited by U. Hornung, Springer, New
York, pp. 77-94, 2007.

Pereira, C.A., Kazemi, H., Ozkan, E. Combined effect of
non-Darcy flow and formation damage on gas well
performance of dual-porosity and dual-permeability
reservoirs. SPE Reserv. Eval. Eng. 2006, 9(5): 543-552.

Ranjith, P., Viete, D. Applicability of the cubic law for non-
darcian fracture flow. J. Pet. Sci. Eng. 2011, 78(2): 321-
327.

Rossen, W., Venkatraman, A., Johns, R., et al. Fractional
flow theory applicable to non-Newtonian behavior in eor
processes. Transp. Porous Media 2011, 89(2): 213-236.
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