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Abstract:
In forced-oscillation mechanical testing of rock samples, low-frequency attenuation is
traditionally measured by the tangent of the strain-stress phase lag, which is interpreted as
the frequency-dependent inverse quality factor. However, such phenomenological parameter
only refers to harmonic waves in a homogeneous medium, lacking physical meaning in
heterogeneous media or for finite bodies. It depends on specific boundary conditions and
becomes insufficient for characterizing fluid-saturated porous rock. It is also sensitive
to geometrical spreading, which is poorly known but can be significant in forced-
oscillation experiments. To overcome these limitations and uncertainties of quality factor,
one can use the temporal attenuation coefficient, a more fundamental quantity directly
representing the relative mechanical-energy dissipation rate within the medium. Here,
frequency-dependent attenuation coefficient is formulated from calibration experiments
with Plexiglas and several published forced-oscillation measurements with fluid-containing
porous rocks at variable temperatures. The resulting attenuation coefficient, unlike the
quality factor, reveals important attenuation attributes: Effective geometrical attenuation,
effective attenuation, relaxation time, and effective viscosity. The effective attenuation is
related to the presence of pore fluids or melts, increases with temperature, and decreases
with static pressure and pore-fluid viscosity. The effective geometrical attenuation is small
in experiments with sandstone but becomes significant in high-temperature, torsional-
deformation experiments with olivine aggregates. Unlike the inverse quality factor, the
peak in the residual attenuation coefficient yields additional quantitative parameters to
characterize the elasticity and internal friction within the rock. This work provides a new
way for studying seismic attenuation, which shall be helpful to oil and gas exploration.

1. Introduction
In subresonant measurements of seismic attenuation using

rock specimens (Spencer, 1981; Jackson and Paterson, 1993),
there exists a striking disparity between the complexity of
the measured phenomena and exceedingly simple theoretical
models used for data interpretation. The complex and multi-
faceted phenomenon of seismic wave attenuation is measured
from the phase lag θ between the sinusoidal mechanical stress
and average strain (the loss tangent, Q–1 = tanθ ) observed
for a small rock specimen (Spencer, 1981). At each testing

frequency f , Q–1 is reported as the key measure of seismic
wave attenuation. By deconvolving the measured stress and
strain time series, the time- or frequency-dependent “dynamic”
modulus for the given type of deformation (denoted M(t) and
M( f ) here) is also obtained. The noted simplistic theoretical
model consists in assuming that the strain-stress phase lag θ

and the measured functions Q–1( f ), M( f ), or M(t) represent
some effective rock properties and can therefore be directly
related to the material in situ.

The assumption of effective material properties Q–1( f )
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and M( f ), which are almost directly measurable in the labo-
ratory, is a powerful hypothesis broadly used in experimental
materials science (Lakes, 2009). This hypothesis has origi-
nated from early studies of time-dependent linear creep in
rock samples (Lomnitz, 1957) and was formalized in the
linear viscoelastic theory, which postulated that time-delayed
strain-stress relations are inherent in materials (Lakes, 2009).
However, the viscoelastic theory only summarizes the above
observations by mathematical transformations in time: Using
the Boltzmann’s linearity principle, differential or integral
operators, fractional derivatives in time, Zener’s or similar
equations, or assumed kinetic equations for material properties
(Nowick and Berry, 1972). Nonetheless, such time-based
descriptions are only appropriate for limited cases in which
time is the only independent variable, such as low-frequency
measurement with a small rock sample. In contrast to this
model, physics generally teaches that at a single point within
a real heterogeneous medium, there exists no definite relation
between the time histories of any parameters (density, strain,
stress, temperature, etc.), but these histories are determined
by spatial interactions with adjacent areas in the form of
waves or flows. Therefore, there also exist no material-specific
spectra Q–1( f ) or M( f ) and no fixed time-dependent modulus
function M(t).

Thus, the observed Q–1( f ) or M( f ) are only empirical
relations measured in certain experiments such as creep under
certain selected boundary conditions and for certain wave
modes (standing or traveling, P, S, extensional, surface, tube,
etc.). For fluid-saturated porous rock, physical limitations of
the viscoelastic paradigm were noted long ago. For exam-
ple, Geertsma and Smit (1961) emphasized that viscoelas-
tic approximations only refer to freely traveling primary-
wave modes in uniform media, but they become invalid for
reflections. White (1986) pointed out “a common fallacy”
of assuming viscoelastic relations between dynamic moduli
measured in porous rock samples, but this fallacy still persists
in many experimental studies today.

For subresonant forced-oscillation laboratory experiments,
the measured Q–1( f ) and M( f ) spectra are affected by many
experimental factors: Sample dimensions, layering, pore-fluid
content, heterogeneity, granularity and saturation, thermal
regime and boundary conditions. Morozov et al. (2018)
showed that the bulk-modulus attenuation (Q−1) peak mea-
sured in a 8 cm long sandstone specimen by Pimienta et
al. (2015a) is about ten times greater than the Q−1 peak
measured in a traveling wave at the same frequency. “Vis-
coelastic” Q−1 peaks may even be caused by pore-fluid flows
occurring outside of the rock specimen, such as the “drained-
to-undrained transition” artifacts caused by the dead volume of
the measurement apparatus (Pimienta et al., 2015b; Morozov
et al., 2018; Tan et al., 2020). As shown in the present
paper, by focusing on the frequency-band averaged attributes
(effective geometrical attenuation γ , effective attenuation qe,
relaxation time τe, and effective viscosity ηe) rather than
solely on the peaks of Q–1( f ), true attenuation properties of
the material become clearer, and material properties can be
constrained more accurately.

In addition to the reliance on assumed time- or frequency-

dependent material properties, the conventional parameteri-
zation of rock-physics measurements by functions Q–1( f )
or M( f ) leads to two additional methodological difficulties,
which are nevertheless often unnoticed. First, the theoretical
viscoelastic modulus M and the corresponding Q−1 refer to
the so-called Cauchy (surface) stresses, which are only a part
of the forces acting within the medium. For example, wave
attenuation within porous fluid-saturated reservoir rock or soil
is often dominated by body-force (Darcy drag) friction, which
is not included in the viscoelastic Cauchy stress. Thus, the
moduli measured for porous-rock samples are not viscoelastic
(Geertsma and Smit, 1961). Similar body forces should also
be dominant within a layered reservoir or near the free
surface or water table. Inertial body forces represent another
type of non-viscoelastic phenomena significant in near Biot’s
characteristic frequency, but they are usually insignificant at
seismic frequencies (Deng et al., 2024).

Another important issue with the Q–1( f ) parameterization
of attenuation measurements is related to its disregard of geo-
metrical spreading (Morozov, 2008, 2010a). It is often thought
that geometrical spreading (GS) is absent in subresonant
laboratory experiments merely because there are no traveling
waves in them. On the contrary, as shown in this paper, an
equivalent of GS is possible, measurable, and also signifi-
cant in some laboratory experiments (i.e., the melt-bearing
specimens of synthetic polycrystalline olivine aggregates by
Jackson et al. (2004)), although the sample is much smaller
(centimeter-scale) than the wavelength (tens to hundreds of
meters) of the sinusoidal oscillations.

The ultimate goal of laboratory experiments consists in
learning about the properties of seismic waves traveling or
reflecting within the earth, which can be better achieved by
using the frequency-dependent temporal attenuation coefficient
χ . For traveling waves, the principal measures of attenuation
are the spatial attenuation coefficient α( f ) and the temporal
attenuation coefficient χ = α/c, where c is the wave veloc-
ity (Aki and Richards, 2002). These quantities characterize
the amplitude and energy decay rates within the wave and
also yield secondary attributes such as the displacement-
acceleration phase lag or Q−1. For rock samples in frequency-
domain forced-oscillation measurements, attributes α and χ

are not easily accessible, but they can often be extracted
as described in section 2. The extracted χ allows making
significant new observations. Instead of strong variations of
Q−1 with frequency, χ( f ) shows a nonzero limit at low
frequency and a systematic increase with frequency related to
wave attenuation. New parameters γ , qe and τe are obtained,
which lead to instructive links to the physical properties of
the tested material. In particular, a new material property of
effective solid viscosity is estimated and denoted ηe.

In section 3, the χ( f ) data parameterization is illustrated
on four applications to forced-oscillation mechanical testing
of rock samples. To explore a variety of material types
and frequency-dependent behaviors, published extensional-
deformation measurements with fluid-saturated Berea sand-
stone at variable temperatures are revisited (Mikhaltsevitch et
al., 2016), similar experiments with Plexiglas at variable con-
fining pressures, measurements of bulk and shear moduli of bi-
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tumen sand (Spencer et al., 2013), and torsional deformations
of melt-free and melt-bearing specimens of synthetic poly-
crystalline olivine aggregates (Jackson et al., 2004). In each of
these examples, quantitative correlations of the measured χ( f )
dependencies with pore fluids, temperatures, fluid content,
and other conditions of the experiments are demonstrated. In
section 4, the χ( f ) and Q–1( f ) parameterizations are further
compared and their relations to the internal structure of the
material are discussed. In this section, further discussions on
the new parameters γ , qe and τe will also be addressed.

2. Temporal attenuation coefficient
Let us start with the definition of the attenuation coefficient

χ for a wave. Since the measured attenuation and disper-
sion spectra are usually related by the Kramers-Krönig rela-
tions (for example, the differential relation d(lnM)/d(ln f )≈
2Q−1/π; Mikhaltsevitch et al., 2016), it is sufficient to focus
on attenuation. For a traveling or standing wave, the time- and
frequency-dependent amplitude at time t and frequency f can
be expressed as:

A( f , t) = G( f , t)exp
[
−
∫

χ( f ,τ)dτ

]
(1)

where G( f , t) is the GS possibly including the source signa-
ture, and time integration is performed along the ray path.
Eq. (1) represents a perturbation or scattering-theory approx-
imation, in which G( f , t) serves as an unperturbed solution
for the elastic wave, and χ( f , t) is the attenuation (damping)
coefficient.

Eq. (1) for wave amplitude is often written by expressing
χ through the Q-factor as (Aki and Richards, 2002):

A( f , t) = G( f , t)exp
−π f t

Q
(2)

Thus, Q–1 is derived from the attenuation coefficient as:

Q−1( f , t) =
χ( f , t)

π f
(3)

Note that both χ and Q are generally functions of not only
frequency but also time t. In attenuation experiments, homo-
geneous media are usually assumed, and time dependencies of
these quantities are disregarded. Nevertheless, Eq. (3) shows
that viewing χ and Q as functions of frequency only (as done
in the viscoelastic model) is valid only for quasi-homogeneous
media (Morozov and Ahmadi, 2015). One should also note
that through dividing χ by frequency f , Q may down-weigh
the high-frequency effect of attenuation and creates an artifact
(near-zero Q) at low frequencies.

The attenuation coefficient χ has a straightforward physical
meaning of the relative rate of amplitude decrease in an oscil-
latory process. Because the energy of an oscillation or energy
flux in a wave is proportional to the squared amplitude A2,
quantity 2χ represents the relative rate of energy dissipation
per unit volume and time. Therefore, χ is practically useful
and directly observable from the rate of amplitude decay in
an arbitrary free oscillation or wave: χ =−∂ ln(A/G)/∂ t.

In contrast to the general mechanical-energy related mean-
ing of χ , the quality factor Q (Eq. (3)) is specialized to

harmonic oscillations in which the displacement is of the
form u( f , t) = A( f , t)exp(−iωt). The amplitude decrease by
Eq. (1) leads to an imaginary shift of this frequency as ω∗ =
ω − iχ . Note that this frequency shift shows another simple
meaning of the attenuation coefficient χ . For this damped os-
cillation, the tangent of the phase lag between the displacement
and acceleration equals tanδ =− Im(ω∗2)/Re(ω∗2)≈ 2χ/ω ,
which equals Q–1 in Eq. (3). Because of this relation to
χ , the phase lag is used in forced-oscillation attenuation
measurements (Jackson and Paterson, 1993), in which it is
difficult to measure the weak energy dissipation rate directly.

Because of the division by f in Eq. (3), the Q–1 is ex-
tremely sensitive to the frequency dependence of χ( f ) at low
frequencies. When relying on a phase-lag Q–1 as attenuation
property of rock, it is assumed that χ must be proportional
to f at low frequencies. Thus, the premise of the Q( f )
parameterization is that quantity ln(A/G) increases not merely
with t but with the number of oscillation periods equal the
time-frequency product f t. However, this premise is often
wrong in practice. Most field observations with body, surface,
and coda waves (Morozov, 2008, 2010a, 2010b; Morozov
et al., 2018), models of thermoelastic phenomena and some
laboratory experiments (section 3) show that χ may behave
differently at low frequencies, and this behavior cause spurious
variations of Q( f ). For example, a nonzero lim f→0 χ = γ

due to an under-corrected GS leads to a hyperbolic increase
of Q−1 ≈ γ/π f at low frequencies, or thermoelastic friction
may lead to χ ≈ const ·

√
f and Q−1 ≈ const/

√
f (Landau and

Lifshitz, 1986). In earthquake seismology, such Q–1 steeply
increasing toward low frequencies is often reported in and
interpreted as manifestation of a “frequency dependence of Q”
for the earth (Anderson et al., 1977). Nevertheless, this depen-
dence is largely due to the instability of the Q parameterization
with respect to the uncertainties of χ( f ) at low frequencies
(Morozov, 2008, 2010a).

The concept of attenuation coefficient χ also helps clar-
ifying a popular misconception about the meaning of band-
limited seismic attenuation. For example, global Q models
represent the Earth’s mantle as a combination of absorption
bands with power-law Q–1( f ) transitions across their flanks
(Anderson et al., 1977). In laboratory rock physics, it is also
believed that seismic attenuation is concentrated near certain
relaxation frequencies at which peaks in Q–1( f ) occur (Jack-
son et al., 2004; Pimienta et al., 2015b). The standard linear
solid (Zener’s) model is often used to illustrate this band-
limited behavior (Lakes, 2009). In this model, the frequency
dependence of the phase-lag Q–1 equals:

Q−1( f ) = 2Q−1
peak

f
fpeak

1+
(

f
fpeak

)2 (4)

Peaks of Q−1( f ) correspond to the maximum phase lags
and occur at frequencies fpeak at which χ( f ) satisfies equa-
tion d(χ/ f )/d f = 0, which simplifies to dχ/d f = χ/ f , or
d(ln χ)/d(ln f ) = 1. Thus, Q−1

peak also corresponds to points
with 45◦ slopes on log-log χ( f ) plots. Below and above this
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Fig. 1. Observable properties of the standard linear (Zener’s) solid: (a) Phase-lag Q−1, (b) empirical modulus, and (c)
attenuation coefficient χ . MR and MU are the relaxed and unrelaxed elastic moduli of the standard linear solid, respectively,
Q−1

peak = (MU −MR)/
(
2
√

MRMU
)

is the peak value of Q–1( f ), fpeak is the frequency at which this peak occurs, and
χ∞ = 2 fpeakQ−1

peak is the asymptotic level of attenuation at infinite frequency.

peak, Q−1( f ) decreases to zero as f and 1/ f , respectively
(Fig. 1(a)), and the dynamic modulus shows the characteristic
plateaus (Fig. 1(b)). However, do these low values of Q–1

mean that wave attenuation is also weak at both f ≪ fpeak
and f ≫ fpeak? Evaluation of the attenuation coefficient χ =
π f Q−1 shows that this is not so (Fig. 1(c)). The mechanical-
energy dissipation rate (energy absorption) is not limited to
the vicinity of fpeak but continuously increases with frequency
(Fig. 1(c)). At low frequencies, the absorption rate increases
as χ ∝ f 2, which is slower than if interpreting Q–1( f ) as the
wave attenuation rate. At frequencies f > fpeak , the attenuation
coefficient continues to increase and approaches an asymptotic
level χ∞ = 2 fpeakQ−1

peak, which is twice the level of χ at the
relaxation frequency (Fig. 1(c)). That is to say, fpeak are not
frequencies at which the strongest energy dissipation occurs.
Therefore, it is indeed that, as shown in Fig. 1, the χ( f ) is
more accurate and reveals properties not seen in the Q( f )
form.

2.1 Material-property parameters in χ( f )
dependencies

In several earlier studies (Morozov, 2008, 2010a, 2010b;
Ahmadi and Morozov, 2013; and other papers by these au-
thors), frequency-dependent attenuation coefficients χ( f ) were
derived for a broad variety of experiments in observational and
exploration seismology. It was shown that in contrast to the
often-strong variations of Q−1( f ), values of χ( f ) vary less
and exhibit systematic increases with frequency. Frequency
dependencies of χ( f ) can be naturally classified into several
functional forms using the Taylor series of χ( f ) at low
frequencies. Using the angular frequency ω , an extended form
of this classification is:

χ(ω) = γ +
qe

2
ω +

τ

2
ω

2 + χ̃(ω) (5)

The different terms in this relation correspond to mate-
rial properties and (potentially) features of the experimental
design. These terms can be interpreted as follows:

1) The zero-frequency intercept defined as γ = lim f→0 χ

represents the effective GS. More precisely, this GS is the
frequency-independent deviation exp(−γt) of the zero-

attenuation limit of the present structure relative to the se-
lected reference model G( f , t) (Eq. (1)) (Morozov, 2008,
2010a).

2) The dimensionless parameter qe describes a linear trend
with respect to ω . By analogy with the conventional qual-
ity factor, Morozov (2008) called parameter Qe = 1/qe
the (frequency-independent) effective Q. The nonzero
qe can be expected for two reasons: (a) As a simple
empirical form commonly used in constant-Q attenuation
measurements, or (b) as a result of dry (Coulomb) friction
between rock grains (Coulman et al., 2013). For forced-
oscillation attenuation measurements, qe may also include
a contribution from calibration of the measured phase
lags.

3) The quadratic term proportional to ω2 defines a charac-
teristic time constant τ . For a homogeneous rock sample
or medium, τ is the relaxation time with respect to a
sudden increase of stress and related to the (effective)
linear solid viscosity ηe of the rock and its modulus M
as τ = ηe/M (Coulman et al., 2013). Viscosity means
internal friction with forces proportional to displacement
or strain rates. From the most general principles of
mechanics, viscous friction is expected in all materials
or media including solids (Landau and Lifshitz, 1986).
For rock, solid viscosity can be produced by fluid flows
(Deng and Morozov, 2016), surface tension, movement of
grains and dislocations, Brownian motion, thermoelastic,
electrochemical, and other effects. For example, the nu-
merical results by Gurevich et al. (2010) shows that the
squirt-flow mechanism within seismic frequency can be
well explained by the parameter τ .

4) The residual term χ̃(ω) denotes the attenuation spectrum
with no broad-band trend with frequency. Peaks and
troughs in this attenuation spectrum can be produced by
deformations of the internal structure within rock, such
as relative shifts of groups of grains, displacements on
microcracks and dislocations, deformations of pores or
patches of fluid saturation, temperature variations and
heat flows, wetting, and other effects (Chen et al., 2021).
Since parameter 2χ directly measures the mechanical-
energy dissipation rate, peaks in χ̃( f ) should be more
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significant than those of Q−1( f ) in practical modeling of
seismic waves.

Earthquake and controlled-source field studies (references
in the preceding paragraph) show that parameters γ and qe
have remarkably consistent values correlated with the layering,
tectonic types, and ages of the crust. Parameter τ was not
considered in those studies. The first three terms in Eq.
(5) usually dominate the data, and the residual variations χ̃(ω)
are relatively insignificant (Morozov, 2008, 2010a). The pair
of parameters (γ , qe) effectively replaces parameters Q0 and η

in the power law Q( f ) = Q0 f η that is often used to describe
the frequency-dependent Q. As shown in section 3, in the
laboratory observations, parameters γ and qe also account for
most of the data, and they exhibit clear sensitivity to physical
properties of the samples.

Parameters τ and qe are caused by similar physical effects
(different forms of solid viscosity or thermoelasticity) and
describe similar increases of the attenuation coefficient with
frequency. Because of this similarity, these parameters may
be difficult to separate in real data. To absorb the trade-off
between these parameters, another characteristic (“effective”)
time τe is defined as:

τe = τ +
qe

f0
(6)

where f0 is the characteristic frequency of the experiment,
such as the dominant frequency or middle of the measured fre-
quency band. Using this time constant, the characteristic solid
viscosity is estimated as ηe = Mτe (Coulman et al., 2013).
This parameter is a useful material property related to internal
friction and seismic attenuation, and it can be estimated from
laboratory experiments.

Thus, the proposed parameterization of forced-oscillation
data reveals two or three attenuation attributes (γ , qe, and
potentially τe) characterizing the entire frequency band. Note
that these parameters are difficult to see in the raw Q−1( f )
data. The residual quantity χ̃( f ) can be interpreted similarly
to the conventional Q−1( f ), i.e., as a combination of relax-
ation peaks, which give additional characteristic times to the
description of the medium. In empirical viscoelastic models,
frequencies of these peaks are treated as independent material
properties (relaxation times; Jackson et al., 2004). In rigorous
continuum-mechanics models, these characteristic times rep-
resent solutions of a generalized eigenvalue problem involving
combinations of multiple viscous and elastic parameters of the
medium (Morozov et al., 2018, 2020; Chen et al., 2021).

Compared with the conventional Q−1( f ) spectra, χ( f )
dependencies reveal additional and practically valuable infor-
mation: A quantitative measure of the effective GS (denoted
γ), effective attenuation qe and viscosity ηe, which can also be
represented by the characteristic relaxation time τe. Quantity
γ is an important parameter of the experimental setup, and qe,
ηe, and τe are applicable to waves traveling in a medium of
the same material. By contrast, the complete Q−1( f ) spectrum
may not be directly transportable to wave environment because
of these different attenuation phenomena being intermixed in it
(Morozov et al., 2018). In Q( f ) form, it is practically impossi-
ble to see the gradual trend of attenuation χ( f ) increasing with

frequency, and it is also impossible to see the zero-frequency
limit of attenuation effects. Thus, the χ( f ) is more accurate
it reveals properties not seen in the Q( f ) form.

2.2 Effective geometrical spreading
By using the Taylor expansion at low frequencies, the χ( f )

has been decomposed into four terms as shown in Eq. (5).
Coefficients of the first three terms reflect the frequency-band
averaged attenuation attribute of the rock and have specific
physical meanings. Among these, the parameter γ represents
the effective GS analogue to the conventional GS. Leaving
aside the historical origins of this term in geometrical optics,
the GS refers to the behavior of a given mechanical system
in the limit of zero attenuation (i.e., zero mechanical-energy
dissipation) within it (Morozov and Ahmadi, 2015). In this
paper, the term GS is used in this sense. For example, for a
rock sample in a laboratory apparatus, the effective GS consists
in deformation of a sample having the same dimensions and
elastic properties but completely free from internal friction,
i.e., elastic.

For both traveling waves and rock samples, the zero-
attenuation limit is always hypothetical because no elastic
equivalents exist for real rocks or earth media. Nevertheless,
this hypothetical limit is the key element of all attenuation
studies, and no Q can be defined without it. In laboratory
experiments, a standard aluminum cylinder is usually used as
such a perfectly elastic reference (Jackson and Paterson, 1993),
but this is still not completely equivalent to the target sample
being elastic. In the viscoelastic theory, the elastic limit
is postulated mathematically, as the instantaneous response
after a step of loading (Lakes, 2009)-but this response is
also unavailable in experiments with waves and with forced-
oscillation loading in the laboratory. Note that for traveling
waves, the conventional GS is also typically “non-geometrical”
and taken in forms unrealizable by wavefront geometries, such
as dependencies G(t) ∝ t−v with ν not equal 0.5 or 1. This
effective GS includes ray bending, multipathing, scattering,
and reflections and mode conversions within heterogeneous
structures (Morozov, 2008, 2010a). In seismic coda studies,
the commonly considered GS limit is similarly hypothetical
and consists of assuming straight rays and spherical wavefronts
(Aki and Chouet, 1975), which are impossible in real crustal
and mantle structures.

Despite the hypothetical character of the pure elastic GS
limit, this limit can readily be measured from the frequency
dependence of χ( f ). Because the attenuation coefficient usu-
ally increases with frequency, the GS limit can be assessed
by the zero-frequency limit of the attenuation coefficient:
γ = χ( f → 0) (Morozov, 2008, 2010a).

For a harmonic wave spreading within an elastic medium,
the GS is described by empirical laws giving the decrease of
the recorded amplitude or energy with propagation time. This
GS may depend on the wave frequency (Yang et al., 2007),
which is analogous to the behavior of a rock sample described
further. Similar to wave spreading, an ideal elastic rock sample
undergoing forced oscillations will generally dissipate me-
chanical energy with time, and this process can be designated
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Fig. 2. Young’s modulus measurements in a dry and glycerol-saturated sample of Berea sandstone (Mikhaltsevitch et al., 2016)
at temperatures 23, 31 and 37.5 ◦C (legends and labels): (a) Measured Q−1( f ); (b) the same measurements in χ( f ) form;
dashed lines show the smooth trends due to the first three terms in Eq. (5); (c) residual χ̃( f ) dependencies; (d) cross-plot of
values qe and γ for the four tests; (e) cross-plot of ηe and γ .

as the effective GS in the experiment. For example, frequency-
independent mechanical-energy dissipation can be caused by
scattering on small-scale heterogeneities (Morozov, 2011) or
by thermoelastic heating of the sample.

In summary, the effective GS is similar to the conven-
tional GS observed in the field because both are the zero-
frequency limit of wave amplitude decay and are influenced by
small-scale scattering (Morozov, 2011) and thermoelasticity.
However, conventional GS is also affected by wave geometry,
such as ray shapes and wavefront curvatures. In contrast,
the effective GS in a small sample is solely due to small-
scale scattering and thermoelasticity. Thus, the effective GS
measured in the lab likely represents a lower bound on the
GS seen in field data.

3. Examples
In the following subsections, attenuation observations from

four published forced-oscillation laboratory experiments are
reprocessed in the same way (Fig. 2). First, the reported de-
pendencies such as in Fig. 2(a) are transformed into the
attenuation coefficient χ( f ) using Eq. (3) (Fig. 2(b)). Then,
the trend represented by the first three terms in Eq. (3) is
subtracted from the data, leaving the frequency-dependent
structural response χ̃( f ) (Fig. 2(c)). Note that due to the
removal of the broadband trend, it is convenient to plot the

variations of χ̃( f ) on a linear frequency scale (Fig. 2(c)).
Because peaks of Q−1( f ) occur at low frequencies fQpeak
(e.g., below ∼3 Hz in Fig. 2(a)), the corresponding varia-
tions of χ( fQpeak) are only about 10% of the χ̃( f ) maxima
(Fig. 2(c)). Finally, the values of γ , qe, and ηe are compared
for the different conditions of the experiments (Figs. 2(d) and
2(e)).

When extracting the broadband trend due to parameters
γ , qe, and ηe (Eq. (5)), the trend line is traced through
the lower values of χ( f ) data (e.g., Fig. 2(b)), so that the
residual is mostly positive. This type of fitting the background
trend means that the peak values are expected to be non-
negative (χ̃( f ) ≥ 0) and describe mechanical-energy dissi-
pation, similarly to the usually expected relation Q–1 ≥ 0.
Such type of fitting of the χ( f ) data is implemented by an
iterative least-squares inverse with larger weights assigned to
the data with negative residuals χ̃( f ). Finally, if the expected
constraint τ ≥ 0 is violated (i.e., the least-squares inverse
identifies a χ( f ) trend with downward curvature), the solution
is discarded, and the curve fitting is repeated with fixed τ = 0
(Eq. (5)). Such cases are interpreted as linear viscosity being
unmeasurable from the data.
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3.1 Glycerol-saturated sandstone at variable
temperatures

Many forced-oscillation attenuation measurements have
been conducted in sandstones. As an example, the results
reported by Mikhaltsevitch et al. (2016) for several sand-
stone samples at three temperatures are used. The data were
obtained from an electronic supplement to that paper. The
principal objective of Mikhaltsevitch et al. (2016) was to
investigate the Kramers-Krönig (causality) relations between
the empirical Young’s modulus and the associated phase-
lag Q−1( f ). Causality must be automatically satisfied in any
experiment of such kind, and therefore it presents a useful
tool for checking consistency of the experiment but do not
constrain properties of the material. In this section, the Q−1( f )
data for Berea sandstone (sample D) from Mikhaltsevitch et
al. (2016) is utilized to investigate its attenuation properties.
The sample was measured in a dry state at temperature 23 ◦C
and after glycerol saturation at temperatures 23, 31 and 37.5
◦C (Fig. 2(a)).

Evaluation of the attenuation coefficients χ( f ) from the
reported Q−1( f ) (Eq. (3)) shows that they are dominated by
broadband upward trends (dashed lines in Fig. 2(b)). Only
for dry sample with weak attenuation, the deviation of χ( f )
from the estimated trend between 60 to 100 Hz is comparable
to the trend terms (dashed lines in Fig. 2(b)). The trends
are dominated by linear terms related to parameter qe, with
qe ≈ 1.6×10−3 for dry sample and 6.1×10–3, 1.4×10–2, and
1.6×10–2 for glycerol-saturated sample at temperatures 23, 31
and 37.5 ◦C, respectively (Fig. 2(d)). As expected, attenuation
qe is the lowest for the dry sample and much higher for the
saturated cases. Attenuation qe also increases with temperature
for the fluid-saturated sample (Fig. 2(b)).

Because the viscosity of glycerol decreases by about three
times across the measured temperature range (Cheng, 2008),
the increase of average attenuation qe coincides with de-
creasing pore-fluid viscosity. This observation may appear
to contradict the intuitive expectation that a more viscous
pore fluid should lead to stronger wave attenuation. However,
this apparent contradiction is easy to explain. Most of the
wave energy is located above frequencies fpeak of the peaks,
and at frequencies f > fpeak, the measured Q−1( f ) increases
with temperature (Fig. 2(a)). Thus, with decreasing pore-fluid
viscosity (increasing temperatures), the relaxation peaks shift
to higher frequencies (Fig. 2(a)), the mobility of the pore fluid
at any fixed testing frequency f > fpeak increases, and conse-
quently the dissipated mechanical-energy flux also increases.
Fig. 1(c) (attenuation coefficient χ∞ = 2 fpeakQ−1

peak) also shows
that wave attenuation increases proportionally to fpeak. A
similar trend of positive temperature-attenuation correlation is
shown in the “3.4 Melt-bearing olivine aggregates” subsection.
Note that for water saturation, the pore fluid viscosity would
be about 1,000 times lower and the peaks of Q−1( f ) would
be located at about 1,000 higher frequencies and above the
seismic band. Therefore, for water saturation, the correlation
between the viscosity of the pore fluid and the observed wave
attenuation should be positive, and the attenuation should
decrease with temperature.

In contrast to most field studies (Morozov, 2008, 2010a,
2010b; Ahmadi and Morozov, 2013), the geometrical-
spreading parameter γ has an insignificant effect on the present
laboratory data (Fig. 2(b)). The characteristic time equals
τe ≈ 3.2× 10−5 s (Eq. (6)) for the dry sample and increases
with temperature from τe ≈ 13.2× 10−4 to 3.2× 10–4 s for
the glycerol-saturated sample (Fig. 2(e)). Using the Young’s
modulus value E ≈ 22 GPa (Mikhaltsevitch et al., 2016), this
τe corresponds to solid viscosity ηe ≈ 7 MPa·s for dry sample
and ηe ≈ 27, 63, and 70 MPa·s in glycerol-saturated states at
23, 31 and 37.5 ◦C, respectively. These values are within the
range of estimates of solid viscosity for sandstone (Morozov
et al., 2018; Chen et al., 2021), although in those studies,
somewhat different viscosities related to relaxation peaks of
Q−1( f ) were found, and the average viscosity ηe was not
considered.

The detrended attenuation coefficient χ̃( f ) for the dry and
glycerol-saturated states of Berea sample D by Mikhaltsevitch
et al. (2016) is shown in Fig. 2(c). Characteristic attenuation
peaks are clearly seen in these data. In dry sandstone, there
is a peak between 40 and 100 Hz, which may potentially be
due to thermoelastic effects in grainy rock (Landau and Lif-
shitz, 1986). With glycerol saturation, the peaks are shifted to
lower frequencies of about 20-60 Hz and broaden. Since these
peaks cover the entire measured frequency range, they likely
represent not some specific relaxation mechanisms within the
sample but a nonlinear attenuation different from the terms
proportional to ω and ω2 in Eq. (5).

Interestingly, the peaks of χ̃( f ) do not shift with reducing
glycerol viscosity (increasing temperatures). Therefore, the
progression of Q−1( f ) peaks with increasing temperature
(Fig. 2(a)) appears to be caused by the increase of the average
attenuation qe or changes in nonlinear attenuation rather than
shifting of the relaxation peaks in χ̃( f ). This observation
confirms the suggestion by Morozov et al. (2020) that the
peak values of Q−1( f ) represent the elastic structure of the
material. The peaks or non-quadratic patterns of χ( f ) could
also be caused by some interactions on the scale of the whole
sample or measurement apparatus, analogous to the drained-to-
undrained transition mentioned in the “Introduction” section.

3.2 Bitumen sand
Fig. 3(a) shows attenuation master curves derived by

Spencer et al. (2013) for frequency-dependent bulk and shear
moduli of Ells River bitumen sand with residual air in the
pores. Measurements of empirical Young’s moduli and Pois-
son’s ratios were conducted at temperatures 5, 16, 22, 25,
35 and 48 ◦C. These measurements were transformed into
the bulk and shear moduli using elastic-moduli relations and
scaled in frequency so that the results fell onto common
curves at reference temperature 5 ◦C (Spencer et al., 2013).
These transformations resulted in nonzero Q−1 ≈ 0.03 at the
lowest frequencies of about 0.3 mHz and decreasing to about
1 mHz for the bulk modulus and 70 mHz for shear modulus
(Fig. 3(a)). The inferred shear modulus Q−1 is negative near
this frequency, which was a nonphysical result from the
viewpoint of the viscoelastic model (Spencer 2013). However,
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Fig. 3. Temperature-corrected master curves for attenuation of empirical moduli for bitumen sand (Spencer et al., 2013). Bulk
and shear deformation data are indicated in the legends and labels. Panels (a) to (e) are as in Fig. 2.

for the present study and likely for most practical applications,
this non-viscoelastic behavior at extremely low frequencies has
a negligible effect on wave attenuation (Fig. 3(b)).

Similar to the case in Fig. 2, the attenuation coefficient
χ( f ) in bitumen sand is dominated by the linear effective-
attenuation term (Eq. (5); Fig. 3(b)). For bulk attenuation, qe ≈
0.15 (Fig. 3(d)), which is about ten times larger than the qe for
glycerol-saturated sandstone (preceding subsection). For shear
deformation, the attenuation is weaker and equal qe ≈ 0.09
(Fig. 3(d)). When transformed into the characteristic (relax-
ation) times using Eq. (6), these values give τe ≈ 1.5 ms
for bulk deformation and τe ≈ 0.9 ms for shear deformation
(Fig. 3(e). Using the low-frequency bulk and shear moduli
from Spencer et al. (2013), these values correspond to solid
viscosities ηe ≈ 1.8 MPa·s for bulk deformation and ηe ≈
0.9 MPa·s for shear. Thus, the attenuation and viscosity are
larger for bulk than for shear deformation, which appears to
be the common relation in the exploration frequency range.

Figs. 3(b) and 3(c) also show that a significant part of the
shear-wave χ( f ) is not included in the trend accounted for by
parameters qe and ηe. Therefore, the shear-wave attenuation
in bitumen sands likely requires nonlinear viscosity with non-
quadratic terms in χ( f ). For bulk attenuation, the term χ̃( f )
shows a broad peak with maximum at about 30 Hz (Fig. 3(b)),
which is similar to the case of sandstone. Because this peak
covers most of the available frequency range, it could also be
explained by nonlinear attenuation or some effects occurring

on the scale of the whole sample or measurement device.
Parameters γ are very small (about (2-4)×10−5 s−1,

Fig. 3(d)) and have little impact on the data, with small
negative values due to the negative slopes of Q−1 described
at the beginning of this subsection.

3.3 Plexiglas
Attenuation measurement equipment is often tested by

measuring dynamic frequency-dependent moduli in Plexi-
glas (polymethyl methacrylate (PMMA) plastic) cylinders
(Lakes, 2009; Tisato et al., 2010). Fig. 4(a) shows results
of such Young’s modulus attenuation measurements at room
temperature and axial confining pressures 7 and 15 MPa by
Mikhaltsevitch et al. (2016). In contrast to the sandstone or
bitumen sand samples in the preceding examples, Q−1( f )
values for Plexiglas increase near continuously across the
entire frequency range, and the rate of this increase reduces
with confining pressure. Note that in earlier measurements
at ambient pressure (page 210 in Lakes (2009); Tisato et
al., 2010), the Q–1 was much larger (Q–1 ≈ 0.08), and
Q−1( f ) exhibited a pronounced peak near 3 Hz. These peaks
were interpreted as due to thermoelastic effects (Coulman et
al., 2013). It appears that application of confining pressure
reduces the measured Q–1 and removes the peak in Q−1( f ) or
shifts this peak to much higher frequencies. Possible causes
for these differences need to be investigated experimentally
and modeled using thermomechanical models.
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For Mikhaltsevitch et al. (2016) results with Plexiglas, a
transformation of Q−1( f ) values into χ( f ) shows that the
entire attenuation-coefficient data are well explained by the
three functional trend terms in Eq. (5) (Fig. 4(b)). The residual
χ̃( f ) is weak and suggests a small peak near 40 Hz at 7
MPa and a peak at 60 Hz at 15 MPa of axial pressure
(Fig. 4(c)). These peaks could correspond to the 3-Hz peak at
ambient pressure (noted in the preceding paragraph) moving to
higher frequencies. The attenuation equals qe ≈ 0.01 at 7 MPa
and qe ≈ 0.005 at 15 MPa, which is within the range of values
for glycerol-saturated sandstone and higher than qe ≈ 0.002 for
dry sandstone (Fig. 2(d)).

A slight upward curvature of the average trends χ( f )
(positive τ) is seen in Plexiglas data, and the corresponding
characteristic times are τe = 2.0 × 10−4 s at 7 MPa axial
pressure and 1.1 × 10−4 s at 15 MPa (Fig. 4(e); Eq. (6)).
With Young’s moduli values from Mikhaltsevitch et al. (2016),
the corresponding viscosities are estimated as ηe = 1.1 MPa·s
at 7 MPa axial pressure and 0.85 MPa·s at 15 MPa. These
viscosities are close to shear viscosities estimated by Coulman
et al. (2013), and they may again be due to thermoelastic
mechanical-energy dissipation in a medium with fine-grained
thermomechanical properties (Landau and Lifshitz, 1986).
Parameters γ are negative and small, similar to other cases
considered above.

3.4 Melt-bearing olivine aggregates
A contrasting example of forced-oscillation mechanical

testing is given by shear-deformation measurements in mantle
rock simulated in synthetic polycrystalline aggregates by Jack-
son et al. (2004). These experiments focused on attenuation
effects caused by partial melts and are interesting to us
here because of several new features: Lower frequencies,
very high temperatures, and different shapes of the Q−1( f )
spectra. In contrast to the Young’s modulus experiments in
the preceding subsections, shear deformations were produced
using torsional stressing of cylindrical samples (Jackson and
Paterson, 1993), and the ambient temperatures were much
higher. Following Jackson et al. (2004), let us compare one
melt-free case (sample 6381 in that paper) and one melt-
bearing case (sample 6410; Fig. 5).

In Fig. 5, the Q−1( f ) observations with the melt-free
and melt-bearing samples are shown after recalculation from
functions of oscillation periods by Jackson et al. (2004).
Patterns of Q−1( f ) are significantly different from the two
exploration case examples in this section. Instead of distinct
peaks or an increase, the shear-wave Q−1( f ) rapidly decreases
with frequency. At fixed frequencies, the reported Q−1 values
also increase with temperature (Fig. 5), which is the same
trend as in fluid-saturated sandstone above the relaxation-
peak frequencies (Fig. 2(a)). Jackson et al. (2004) referred
to these combined frequency and temperature trends as the
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“viscoelastic background” of the material.
Despite the apparent differences in the Q−1( f ) data, a

transformation into the χ( f ) form reveals a similarity between
the melt-free and melt-bearing cases and gives quantitative
parameters describing the shapes of the attenuation spectra.
First, the shapes of χ( f ) dependencies (second row in Fig.
5) are quite similar to those in Figs. 2(b) through 4(b). The
principal contributions to attenuation also come from the linear
parts of these dependencies, with qe ranging from 0.01 at 1,000
◦C to 0.07 at 1,300 ◦C for the melt-free sample (bottom left
in Fig. 5), and from qe ≈ 0.02 at 1,000 ◦C to 0.15 at 1,300
◦C for the melt-bearing sample (bottom right in Fig. 5). Thus,
the melt-bearing material should show an about twice stronger
attenuation in a seismic wave. Parameter τ (Eq. (5)) cannot
be reliably estimated from these data, but τe inferred from qe
(Eq. (6)) increases from 26 ms at 1,000 ◦C to 140 ms at 1,200
◦C for the melt-free sample and from 28 ms at 1,000 ◦C to
260-320 ms at 1,200-1,300 ◦C for the melt-bearing sample.
These values are an order of magnitude larger than those for
glycerol-saturated sandstone at near-room temperatures.

With constant shear modulus 5 GPa of the material (Jack-
son et al., 2004), solid viscosities ηe are proportional to τe and
range from 140 MPa·s at 1,000 ◦C to 1.45 GPa·s at 1,200-1,300
◦C. These viscosities are also two to five times larger than
viscosities of glycerol-saturated sandstone (Fig. 2(e)). Thus,
similar to the case of subsection 3.1, although the viscosity
of melt decreases with temperature, the effective viscosity of
the rock strongly increases with it. This anti-correlation of the
effective and pore-fluid viscosities similarly occurs because of
recording at frequencies far above the peaks.

Plots of χ̃( f ) for the two samples (third row in Fig. 5)
show similar spectra with peak levels about twice higher for
the melt-bearing sample. The data suggest an attenuation peak
near 0.12 Hz at temperature 1,000 ◦C and possibly a peak
near 0.35 Hz at higher temperatures. However, the latter peak
occupies the whole measured frequency range, and it could be
accommodated by selecting a different nonlinear shape of the
average trend.

The reversed lower-frequency “background” trends of
Q−1( f ) for olivine aggregates (Fig. 5, compared to Figs. 2(a),
3(a), and 4(a)) are due to larger and positive values of parame-
ter γ ≈ 0.01 to 0.03 s−1 for the melt-free sample and γ ≈ 0.03
to 0.2 s−1 for the melt-bearing sample (compare Figs. 2(d),
3(d), and 4(d) with bottom row in Fig. 5). In the traditional
viscoelastic terminology, the observed shapes of Q−1( f ) can
be attributed to a “relaxation mechanisms” with extremely low
frequencies below 1 mHz. Such slow relaxation and amplitude
decay could again be due to temperature gradients, thermal
dissipation, and thermoelastic effects on the scale of the entire
rock sample. Overall, as argued by Morozov et al. (2018),
attributing such phenomena to abstract time- and frequency
dependencies of phenomenological viscoelastic parameters is
an unreliable and physically insufficient approach.

Our selection of parameters γ and qe in Eq. (5) by linear
regression at each temperature is empirical and dictated by
simplicity and applicability to other studies of χ( f ) in labo-
ratory and field experiments. However, specifically for high-
temperature experiments with olivine aggregates, alternate

parameterizations could be useful. In particular, background
trends Q−1( f ) ∝ f−1/2(χ( f ) ∝

√
f ) approximate the data

remarkably closely (dashed lines in the first row in Fig.
5), suggesting the thermoelastic mechanism of mechanical-
energy dissipation. Jackson et al. (2004) described the Q−1( f )
background at all temperatures by using an elaborate semi-
empirical model with four adjustable parameters. To charac-
terize the shapes of the background functions, these authors
defined an empirical time-dependent compliance function in
the form of the Andrade law J(t) = JU + β tn + t/η (with
empirical parameters β , n, and η), transformed it into the
frequency domain, and evaluated the inverse Q as Q−1

B ( f ) =
ImJ( f )/ReJ( f ). Further, frequency f in this function was
replaced with a temperature-scaled pseudo-frequency using an
Arrhenius-law type relation fT = f exp

[(
T−1 −T−1

r
)

EB/R
]
,

where T is the temperature, Tr is some reference temperature
at which fT = f , R is the molar gas constant, and EB is another
adjustable parameter interpreted as the activation energy.

Multiple parameterizations can also be selected for the
residual frequency dependencies χ̃( f ). Jackson et al. (2004)
used a Gaussian peak in the log-frequency domain super-
imposed on the Q−1

B ( fT ) background, with three additional
empirical parameters: Logarithm of the central fT , variance,
and magnitude of the peak. In the present work, in all cases
in third row in Fig. 5, and also Figs. 2(c) and 3(c), the
broad peaks in χ̃( f ) could be approximated quite accurately
by adding non-polynomial functional forms with one or two
additional parameters in Eq. (5). Such terms would allow
empirical fitting of the entire χ( f ) dependences (Figs. 2(b),
3(b) and second row in Fig. 5) with accuracy sufficient for all
applications.

Comparing the results for the melt-free and melt-bearing
samples, Jackson et al. (2004) argued that the presence of
melt is indicated by a stronger Gaussian (in the log( fT )
domain) peak in their model. In the attenuation-coefficient
parameterization, this point appears to stand out even stronger,
and also with more detail. The shapes of the spectra for the
two cases are similar (the middle two rows in Fig. 5), but the
melt-bearing case is clearly indicated by about five times larger
γ , three times larger qe (bottom row in Fig. 5) and also twice
higher peaks in at all temperatures except 1,000 and 1,200 ◦C
(third row in Fig. 5). Thus, the proposed simple identification
of the low-order functional terms (Eq. (5)) is clearly sensitive
to the presence of melts within these synthetic mantle rocks.

4. Discussion
The principal observation of this paper is that when

interpreting forced-oscillation data, it is useful to not only
report the Q−1( f ) spectra and identify their peaks but also
to quantitatively analyze the attenuation coefficient χ( f ). The
same recommendation for many types of field seismic data
was made by Morozov (2008, 2010a, 2010b) and Ahmadi and
Morozov (2013). The χ( f ) is the primary quantity originating
from the fundamental definition of wave attenuation (Eq. (1)),
but the Q−1( f ) is a secondary and more subtle quantity.
The inverse quality factor Q−1( f ) possesses an enhanced
sensitivity to the low-frequency interval in which various
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adverse factors like inaccurate zero-frequency (“geometrical
spreading”, GS) corrections or thermoelastic effects may be
significant.

The key advantage of the χ( f ) parameterization of field
or laboratory data is in its freedom from two assumptions
implied in the Q−1( f ) approach: 1) That χ must equal zero
in the low-frequency limit (i.e., that γ = 0), and 2) that
the rock sample and the measurement apparatus obey the
viscoelastic theory. In principle, value γ = 0 can always be
achieved by selecting an accurate GS model matching the limit
γ = χ( f → 0) (Eq. (1)). However, in practice, this selection
is usually unachievable, and simplified GS models are used,
leading to spurious trends and instabilities in the values of
Q−1( f ). The advantage of the χ( f ) parameterization is that
in this form, the inaccuracy of GS becomes clear and can
be corrected for (Morozov, 2008, 2010a). In laboratory rock
physics, this issue of γ ̸= 0 appears to be less significant, but it
still needs to be kept in mind, particularly at low frequencies,
high temperatures, or possibly for shear deformations (last case
in section 3). More applications are needed to assess the range
of γ values for laboratory experiments.

Measurement of a χ( f ) dependence yields a hierarchy
of parameters γ , qe, and τe and χ̃( f ), of which the first
three are practically unnoticeable in conventional Q−1( f )
parameterizations. By switching to the χ( f ) parameterization,
the focus of data analysis shifts from investigating the details
of tanδ spectra assuming a perfectly accurate zero-attenuation
model to measuring the quantitative parameters γ , qe, and τe
without such assumptions. In contrast to Q−1( f ) (i.e., tanθ )
and parameter γ which may be sensitive to the detail of
the present apparatus, parameters qe, and τe (and ηe) are
expected to relate to a wave insitu, i.e. to the primary object
of seismic investigation. Due to their frequency-band averaged
characters, parameters γ , qe, and τe should be relatively stable
with respect to experimental errors and other adverse factors,
since the random noise can be averaged out. However, it is
important to note that systematic errors cannot be eliminated
by this approach or any another theoretical approaches, and
corrections must be made to the experimental setup itself.

Peaks of “wave attenuation” are of primary interest in
rock physics and seismic studies; however, shall one look for
peaks of functions Q−1( f ), χ( f ), or χ̃( f )? Function χ( f )
usually has no localized peaks (e.g., Fig. 1(c)), and peaks
in χ̃( f ) occur at higher frequencies and are generally less
pronounced than those of Q−1( f ) (e.g., Fig. 2(b)). Both χ̃( f )
and Q−1( f ) peaks can be used for building detailed models
of the medium (Chen et al., 2021); however, χ̃( f ) might be
preferable because this function is free from biases due to
insufficiently known GS and/or thermoelastic backgrounds.

In this paper, no formal estimates of the uncertainties
are made for quantities γ , qe, and τe. Our key points are
clear without error analysis: These quantities are instructive,
correlated with physical conditions of the experiments, often
nonzero, and yet they are not considered in conventional inter-
pretations of Q−1( f ) spectra. Error analysis can be performed
using standard methods; however, the principal sources of
uncertainties should be related to the limited frequency bands
of the data. The residual attenuation coefficient χ̃( f ) was also

only analyzed qualitatively, but this analysis can be extended,
yielding additional quantitative parameters. The broad peaks in
χ̃( f ) seen in most cases show that non-polynomial frequency
dependencies such as the thermoelastic χ( f ) ∝

√
f can in

some cases be fit to the observed χ( f ) more effectively.
Non-polynomial frequency dependencies of χ( f ) could also
indicate non-Newtonian internal mechanical friction within the
medium (Coulman et al., 2013).

Finally, note that similarly to Q−1( f ) and the dynamic
modulus M( f ), the attenuation coefficients χ( f ) (temporal)
and α( f ) (spatial) are not strictly material properties for a
given rock sample. These quantities can be interpreted as
properties of a traveling harmonic wave which would be
observed in a (hypothetical) boundless volume of the same
material. In the sense of such reference to an idealized case
of a homogeneous medium, these properties can be called
“apparent attenuation,” similarly to the apparent resistivity
in electrical surveying (Morozov and Ahmadi, 2015). For
detailed interpretation, a significant effort of modeling and
inversion is required for removing the effects of experimental
conditions and determining the true material properties of
the sample. These true material properties would be not the
empirical Q−1( f ), χ( f ), or M( f ) but frequency-independent
matrices of elastic, viscous, and Darcy-type friction properties
of the medium (Morozov et al., 2018; Chen et al., 2021). For
fluid-saturated rock at variable temperatures, this inversion for
material properties represents a complex task because of the
variety of boundary and thermal conditions in the experiments.

5. Conclusions
Attenuation-coefficient parameterization of forced-

oscillation mechanical testing of rock samples is applied
to published measurements with glycerol-saturated Berea
sandstone, bitumen sands, Plexiglas, and synthetic olivine
aggregates at variable temperatures. The parameterization
reveals three new attributes which characterize the rock and
relate to its physical properties:

1) The effective geometrical (frequency-independent) atten-
uation denoted γ . This parameter is small and appears
negligible for glycerol-saturated sandstone and Plexiglas.
However, values γ ≈ 2 × 10−3 − 2×10−2 s−1 are sig-
nificant in lower-frequency, high-temperature torsional-
deformation experiments with olivine aggregates. Under
these conditions, this effective attenuation is likely cause
by thermoelastic relaxation at the surfaces of rock sam-
ples.

2) Effective attenuation qe, which is a counterpart of the con-
ventional frequency-independent inverse Q-factor used in
field data analysis. The qe increases in the presence of
pore fluids or melts and with increasing temperature, and
it decreases with confining pressure. For Berea sandstone,
qe ≈ 0.002 for dry rock and qe ≈ 0.01−0.02 for glycerol-
saturated rock. Notably, for fluid-saturated porous rock,
attenuation qe decreases with increasing viscosity of the
pore fluid. For bitumen sand, the attenuation is much
stronger, with qe ≈ 0.1 for shear deformation and qe ≈
0.15 for bulk deformation.
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3) Characteristic time τe or effective viscosity ηe. These
parameters are often difficult to differentiate from qe,
but they are closely related to physical properties of
the material. From the data of this paper for Plexiglas,
ηe = 1.1 MPa·s at 7 MPa and decreases with confining
pressure. For dry Berea sandstone, ηe ≈ 7 MPa·s, and for
glycerol-saturated sandstone ηe ≈ 27, 63, and 70 MPa·s at
temperatures of 23 ◦C, 31 ◦C, and 37.5 ◦C, respectively.

Parameters γ , qe, and τe are directly related to the prop-
erties of seismic waves in the field and quantities measured
in many other experiments in observational and exploration
seismology. In addition to these first-order parameters, sec-
ondary variations of the attenuation coefficient with frequency
are also obtained, and they can be used for obtaining detailed
constraints on rock rheology. The study also found that ob-
servations of shear forced-oscillation deformations (Jackson
et al., 2004) at high temperature may be dominated by
thermoelastic mechanical-energy dissipation on the surfaces
of the samples.

By using this new attenuation-coefficient parameterization,
more useful information can be obtained by analyzing seismic
attenuation for conventional and unconventional hydrocarbon
exploration.
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