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Abstract:
Pore-network models have become a critical tool in the study of fluid flow in geo-energy
researches over the last few decades, and the accuracy of pore-network modeling results
highly depends on the extraction of pore networks. Traditional methods of pore-network
extraction are based on pixels and require images with high quality. Here, a pixel-free
method called the flashlight search medial axis algorithm is proposed for pore-network
extraction in a continuous space. The search domain in a two-dimensional space is a
line, whereas a surface domain is searched in a three-dimensional scenario. Thus, the
algorithm follows the dimensionality reduction idea; the medial axis can be identified
using only a few points instead of calculating every point in the void space. In this way,
computational complexity of this method is greatly reduced compared to that of traditional
pixel-based extraction methods, thus enabling large-scale pore-network extraction. Based
on cases featuring two- and three-dimensional porous media, the algorithm performs well
regardless of the topological structure of the pore network or the positions of the pore
and throat centers. This algorithm can also be used to examine both closed-boundary and
open-boundary cases. Finally, this algorithm can identify the medial axis accurately, which
is of great significance in the study of geo-energy.

1. Introduction
Porous media have been considered effective fluid carriers

in various geo-energy fields in the last few decades, such
as hydrogen and carbon dioxide storage (Makal et al., 2012;
Heinemann et al., 2021), and digital rock study in reservoirs
(Sun and Zhang, 2020; Shan et al., 2022b). Porous media have
complex topological structures induced by various pores and
throats (Dullien, 1975; Raoof and Hassanizadeh, 2010), thus, it
is imperative that porous media should be accurately described
to conduct further numerical investigation.

Porous media are commonly found in a wide range of
areas, especially petroleum and natural gas reservoirs (Cao
et al., 2020). Advancements in CT scanning have enabled
the visualization of the inner void structures of rock matrixes
(Mostaghimi et al., 2013; Song et al., 2021), which reveals
complex topological structures comprising pores and throats.
Problems in porous media have been studied using several

numerical approaches, such as the lattice Boltzmann method
(Zhang and Sun, 2019), phase field method (Zhu et al., 2020),
and smoothed-particle hydrodynamics (Liu et al., 2022a; Feng
et al., 2023). Molecular simulation methods have also been
employed to reveal the micro-scale mechanisms (Yang et
al., 2020; Liu et al., 2024), notably the fluid behavior in
nanoscale pores (Liu et al., 2022b; Shan et al., 2022a).
However, calculating single- or multi-phase flow in complex
pore spaces is usually computationally challenging. Numer-
ical discretization methods, such as finite volume and finite
element methods, require the generation of highly accurate
unstructured meshes for porous media (Javandel and With-
erspoon, 1968; Yang et al., 2019). Therefore, a simplified
numerical method is necessary to solve problems in complex
porous media.

The first pore-network model (PNM) was proposed by
Fatt (1956); a regular two-dimensional lattice was built using
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Fig. 1. Schematic of medial axis characteristics.

random radii to predict the capillary pressure and relative
permeability. However, a regular pore network is not capable
of representing the topology and geometry of porous media.
Bryant and Blunt (1992) studied pore-network extraction from
a realistic porous media, in which uniform spheres were
packed, leading to the conclusion that the pores were packed
in a tetrahedral configuration. Furthermore, they predicted the
relative permeability of a sand pack, which agreed well with
results for sandstone. The growth of PNMs has enabled them
to overcome the problems associated with irregular lattices,
varying wetting conditions, and multi-phase flow (Blunt et
al., 2002; Balhoff and Wheeler, 2009; Ryazanov et al., 2009).
This technique is also useful for handling more complex
problems, such as non-Newtonian, non-Darcy, and reactive
flows (Lopez et al., 2003; Yiotis et al., 2006). Song et
al. (2023) proposed a general PNM based on three-phase
thermodynamic equilibrium, and predicted multicomponent
flow in nanoporous shale. The computational speed of PNMs is
considerably faster than that of mesh-based methods; however,
their accuracy relies on pore-network extraction.

The medial axis and maximal ball methods are commonly
used to extract the pore networks of porous media (Bultreys
et al., 2020; Cui et al., 2022). Based on the inherent porous
characteristics of a porous medium, the medial axis is situated
in the middle of the geometric pore space (Blunt, 2001). A
significant advantage of the medial axis method is its capacity
to reduce dimensionality. For instance, in the case of the two-
dimensional domain, the medial axis is comprised of medial
lines, while in the case of the three-dimensional domain, the
medial axis is comprised of the intersection of several medial
surfaces. Burning algorithms are commonly used to determine
the medial pixel or voxel in the medial axis method. This
process involves burning the cells from the solid phase to
the void phase one layer at a time (Xiong et al., 2016).
In the maximal ball method (Dong and Blunt, 2009), the
largest inscribed balls are searched in the void space, and balls
contained within other balls are removed. The maximal balls
are used to identify pores, and the smallest balls are used to

identify throats. However, in both the medial axis and maximal
ball algorithms, extraction relies on image quality, which is
typically based on the resolution. Thus, a single extraction
algorithm may yield varying results when subjected to varying
resolutions.

In this study, the flashlight search medial axis (FSMA)
algorithm, a pixel-free pore-network extraction algorithm for
continuous spaces, was proposed. Theoretically, the FSMA
algorithm has a high pore-network extraction efficiency,
as dimensionality-reduced search is performed in a two-
dimensional or three-dimensional space, where only a small
part of the data are used to identify the medial axis.

2. Methodology

2.1 Characteristics of medial axis
The minimum distance between a random point in the void

space and a point in the solid phase is determined as follows:

dist(x,D) = min{dist(x,y),y ∈ D} (1)
where D represents the solid phase, y represents the point in
the solid phase, x represents the point in the void phase, and
dist represents the minimum distance. In an image, a pixel
of a solid phase can be visualized and considered a point
in that solid phase. The distance map is obtained using the
above equation. As shown in Fig. 1, the dist of the pore
center is the maximum in that pore space, which is similar
to the mountain top. The points on the medial axis are local
maxima; the gradient of dist is discontinued, and the curve
resembles a mountain ridge. One special point is the throat
center, where dist is the minimum along the medial axis.
The throat center is also a saddle point; the minimum and
local maximum are in the direction of the medial axis and
the direction perpendicular to the medial axis, respectively.
The medial axis comprises the discontinuation points of dist’s
gradient, which are called critical points, suggesting that the
medial axis can be determined accordingly. As depicted in
Fig. 1, the total length between two pores is defined as the
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Fig. 2. (a) Gradient of dist and (b) Laplace of dist.

summation of two parts of lengths from the pore center to the
throat center, which can be expressed as follows:

Lc = L1 +L2 (2)
where Lc is the length between the two pore centers, L1 and L2
represent the lengths between the pore centers and the throat
center. If the inscribed sphere is considered the pore body,
then the following equation is the simplest way to determine
the length of the throat channel:

Lt = L1 −R1 +L2 −R2 (3)
where Lt is the length of the throat channel, R1 and R2 are
the radii of two inscribed spheres. However, the volume of the
pore body is larger than the volume occupied by the inscribed
sphere. The length fraction between the pore body and the
throat channel is handled as follows:

Lt = L1 −α
L1Wt

R1
+L2 −α

L2Wt

R2
(4)

where Wt is the dist value at the throat center and α is the pore-
throat segmentation coefficient. In this regard, the segment
coefficient is usually set to 0.5 or 0.6 in previous studies (Øren
and Bakke, 2003; Dong and Blunt, 2009).

2.2 FSMA pore-network extraction algorithm
2.2.1 Two-dimensional pore-network extraction algorithm

Based on the properties presented in Section 2.1, two-
dimensional pore-network extraction is completed as follows:

Step 1: Determine the pore center from a random point
in the void space using the steepest-descent method. The
calculation domain for the initial point is discretized in the
form of a circle to search for the maximum descent. The search
range should be as short as possible to ensure the accuracy of
pore-center calculation. In our experience, this range should
be equivalent to the size of a pixel. Thus, the point is updated
with the search step size of the range until the pore center is
reached. This process can be likened to a person climbing the

steepest route to reach a mountain’s summit.
Step 2: From the first pore center, find the medial axis

directions. On the position of pore center, the dist(x,D) is
maximum, so there are some critical points lie around the
pore center. Circle discretization is applied around the pore
center. The medial axis can be determined via a critical point.
As seen in Fig. 2, in a case involving three medial axes from
one pore center, three critical points are determined using the
gradient and Laplace of dist.

Step 3: Flashlight searching method to update the critical
point on the medial axis. Once the direction of the medial
axis is determined, a fan-shaped region is adopted to search
for the next critical point. The radio of the fan-shaped region
should be smaller than the radio of the circular search region.
The critical point can be updated along the medial axis by
following this rule. As shown in Fig. 3, the medial axis (ma)
is determined one step at a time, and the critical point (cp)
at each step is searched by building a fan-shaped region with
a radius of rs. Thus, the total length between two pores (pc1
and pc2) is expressed as follows:

Lt = L1 +L2 =
n1

∑
1

rsi +
n2

∑
n1+1

rsi (5)

where rsi is the search radius at step i, n1 is the step number
from the initial pore center to the throat center, and n2 is the
step number from the throat center to the next pore center.

Step 4: Judge the next pore center and throat center. The
critical point is updated via the FSMA method. If the dist on
the critical point reaches its maximum value, then that critical
point is the pore center. If the dist on the critical point reaches
its minimum value, then that critical point is the throat center.

Step 5: Exclude the overlapped pore centers. Since the
medial axis will be determined from one pore center to another
pore center, there will be some overlapped pore centers. Thus
the overlapped pore centers need to be excluded to avoid
repetitive calculations.
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Fig. 3. Schematic of two-dimensional flashlight search.
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Fig. 4. Uniform sphere-packing scenario: (a) Projection from cube to sphere and (b) dist map on sphere surface.

2.2.2 Three-dimensional pore-network extraction
algorithm

The idea underlying three-dimensional pore-network ex-
traction is similar to the above, but the three-dimensional space
introduces greater complexity.

Step 1: Find a pore center in the three-dimensional void
space by using the steepest-descent method. Unlike the circular
search region in the two-dimensional case, a spherical search
region is adopted in the three-dimensional study, as seen in
Fig. 4(a). The rest of the settings are the same as those in the
two-dimensional case.

Step 2: Find the medial axis directions from the first pore
center. Three-dimensional discretization is conducted, with the
pore center regarded as the sphere center; this is achieved via
projection from a cube to a sphere, as shown in Fig. 4(a). The
dist map on the sphere surface can then be calculated, as seen
in Fig. 4(b). Hence, discretization performs better in terms of
mesh homogeneity. In Fig. 4, six local maximum points are
observed on the sphere surface, which indicates the presence
of six medial axis directions. The cross point of the medial
surfaces is the medial axis point, suggesting that several medial

surfaces form the medial axis.
Compared with classical (spherical-coordinate) discretiza-

tion, the projection from the cube to the sphere has better
discretization performance. The dist results of both discretiza-
tion approaches along the medial axis are shown in Fig. 5.
Misidentification may occur in Fig. 5(a), as the rough curve
may induce some local minimum values along the medial axis.
In Fig. 5(b), the dist shows a smoother curve, which is better
for identifying the pore and throat centers.

Step 3: Update the critical points on the medial axis via the
FSMA algorithm. Unlike the fan-shaped search region in the
two-dimensional space, a cone-shaped search region is used
in the three-dimensional space. The rest of the settings are the
same as those in the two-dimensional case. In this manner, the
critical points on the medial axis are determined by identifying
the medial surfaces, as shown in Fig. 6.

Step 4: Judge the next pore center and throat centers. In
the cone-shaped search region, the medial surface is reduced
to a medial axis. Thus, the pore center in the cone-shaped
search region is the cross point of several medial axes; the
pore center has the maximum dist value. Along the medial
axis, composed of the critical points, the throat center can be
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Fig. 5. dist values on medial axis obtained via (a) discretization using spherical coordinates and (b) discretization using cubic
projection on sphere surface.

Algorithm 1: FSMA
Input : A random initial point in the void space p;

the known solid-phase data s; the search
radius rs to determine the critical point cp.

Output: The pore center pc; the medial axis ma;
// According to Input

1 Find the first pore center p1 using the steepest-descent
method;

2 for search pore = 1 : m
// From new-reached pore centers to

further-reached pore centers
3 do
4 for search step = 1 : n

// For the calculation of one strip
of medial axis

5 do
6 Discretize the search region;
7 Determine the neighboring solid data from the

previous cp;
8 Calculate the dist value of discretized points;
9 Judge the critical point;

// Introduced in Output and Step
1

10 if critical point cpi reaches the pore center
// Judge the pore center, in

Step 2
11 then
12 pci = cpi;
13 mai = {cp1, · · · , cpi};
14 end
15 end
16 Update the new-searched pore centers;
17 Exclude overlapped pore centers;

// According to Step 4
18 end

identified at the minimum of dist.

Table 1. Computational complexity of FSMA algorithm.

Line Complexity Description

Line 1 O(s2) Steepest-descent algorithm

Lines 6-9 O(n logn) Search for critical points

Lines 10-14 O(k×n) Determination of pore and throat
centers

Lines 16-17 O(n) Updating of pore and throat
centers

Lines 1-18 O(m× (n logn+ k×n+n))

Total O
(
s2 +m× (n logn+ k×n+n)

)
= O(mn logn)

Step 5: Exclude the overlapped pore centers. This step is
the same as the operation in the two-dimensional scenario.

The pseudocode of the FSMA algorithm is summarized as
follows:

2.3 Comparative analysis of FSMA and
pixel-based algorithms

Regarding to the traditional pore-network extraction meth-
ods, such as the maximal ball algorithm, the shape of the
inscribed sphere highly depends on the image resolution.
If the inscribed sphere is built on a low-resolution image,
the boundary information of the inscribed sphere cannot be
accurately described, and high-resolution images are com-
putationally expensive. Therefore, the ability of the FSMA,
a pixel-free method, to identify the medial axis regardless
of image resolution is a natural advantage. Because of the
dimensionality reduction idea during the search, computational
complexity is reduced compared with that of traditional meth-
ods. The computational complexity of the FSMA algorithm is
summarized in Table 1. As the steepest-descent method is only
used once (for determining the first pore center), its complexity
is not considered in the total code. k is the comparison number
for the pore and throat centers; this value is usually too small
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Fig. 6. Schematic of determination of medial axes: (a) Eight medial axes from pore center in cubic solid box and (b) one
medial axis formed by three medial surfaces.
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Fig. 7. Pore-network extraction in two-dimensional scenarios constructed using (a) spheres and (b) different shapes.

to add to the computational complexity.
The computational complexity of traditional pore-network

extraction methods is expressed as follows:

O = (M+N)

(
L
ε

)d

(6)

where O represents the computational complexity; M and N
are the numbers of pore and throat centers; d represents the
dimensionality; L represents the size of the computational
domain; and ε is the discretized unit, which is the size of the
pixel or voxel in an image. Hence, L/ε is the number of points
that should be calculated. The computational complexity of the
FSMA algorithm is expressed as follows:

O = (M+N) log
(

L
ε

)
(7)

In a case where L/ε = 10 in a three-dimensional space,
the complexity of the FSMA algorithm is 1,000 times lower
than that of traditional methods, in which all points need to
be considered for one-time calculation.

3. Validation and discussions

3.1 Pore-network extraction from
two-dimensional porous media

Although two-dimensional porous media have few appli-
cation scenarios, such as artificial micro-fluidic chips, they
should still be used for validation. A two-dimensional porous
medium is built in a domain sized 100×100. The solid-phase
regions are closed using known boundary points, suggesting
that the dist value in the void phase can be calculated from
these solid boundary points. The inner points in the solid phase
are unnecessary, which helps save computer memory.

The medial axis starting from the first pore center is
identified, as depicted in Fig. 7, which verifies the validity of
the FSMA algorithm for the two-dimensional porous medium.
On the medial axes, the throat centers can be determined
accordingly; in addition, the throat centers are located at the
positions of the minimum distance between two spheres, as
shown in Fig. 7(a), which enables a clear assessment of the
throat center calculation. In Fig. 7(b), the medial axis and th-
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Fig. 8. Pore-network extraction from one pore center to other
pore centers.

roat center can also be identified, suggesting that the FSMA
algorithm can search the medial axis from one pore center via
the dimensionality-reduced search method.

Once the medial axis is determined, the other pore centers
can be searched from the first pore center and its medial
axes. As shown in Fig. 8, the pore centers and medial axes
comprise the topological structure of the porous medium.
The pore network is identified gradually, pore center by pore
center. Moreover, neighbor search is adopted in the search
process. The dist values of the discretized points in the fan-
shaped search region are calculated within the neighbor range,
which is identified from the critical point in the previous
step. Therefore, the pore-network construction of the FSMA
algorithm only needs a small part of the information in the
porous medium.

3.2 Boundary treatment
Boundary treatment is critical for pore-network extraction,

as PNMs are used for fluid-flow simulation, which is a
major application field in petroleum engineering (Golparvar
et al., 2018; Zhao et al., 2023). Inflow and outflow boundaries
are necessary for fluid-flow simulation, and dead-end corners
are also considered as special boundaries in porous media
(Lindquist and Venkatarangan, 1999; Yuan et al., 2022). The
FSMA algorithm has a natural advantage in searching dead-
end corners. As the FSMA algorithm is developed by search-
ing medial axes for critical points, a critical point cannot be
found in a dead-end corner within a search region. Therefore,
dead-end corners are determined, as shown in Fig. 9. Despite
the increase in the number of pore centers, the dead-end
pore center can be ignored in some scenarios, such as single-
phase fluid flow. However, in multi-phase fluid-flow problems,
dead-end corners play an important role. Fluids with similar
wettability to the rock surface are trapped in these corners,
thus affecting the subsequent fluid flow.

Solid boundaries are a common boundary type in fluid-flow
simulation, as the connectivity of pores and throats cannot be
confirmed in porous media. In a solid boundary, the surface of
a solid phase and a solid box form new pore channels. Dead-

end corners are also generated in closed solid boxes, and they
can be extracted when necessary. As seen in Fig. 10(a), the
FSMA algorithm can search all critical points and extract the
pore network in solid-box domains; this ability is meaningful
in the study of reservoir rocks which have bad connectivity.

Open boundaries are also examined using the FSMA
algorithm. In cases with open boundaries, the search operation
proceeds until the boundary of the computational domain. The
pore-network extraction is addressed in a domain where the
right and left sides have open boundaries and the pore centers
stop at the boundaries, as shown in Fig. 10(b); these are set as
the Dirichlet boundary condition and the Neumann boundary
condition, respectively (Raeini et al., 2012; Liu et al., 2020),
and the fluid flow can be realized consequently.

3.3 Different packing styles for
three-dimensional space

As shown in Fig. 11, a sphere-packing model is built in a
cubic box sized 100×100× to verify the FSMA algorithm in a
three-dimensional space. Sixty-four solid spheres are packed
in this box in a 4× 4× 4 packing style The radius of each
sphere is 12.5, suggesting that the spheres are in contact
with each other. The surface of a solid sphere is discretized
through regular hexahedron projection for better computational
performance. The critical points are searched and the medial
axis is identified in the three-dimensional space using the
computational algorithm described in Section 2.2.2.

A regular packing style is adopted because the medial axis
is connected as a regular network and is easily verified.

The beginning state of the medial axis was identified in
Fig. 11(a), which is from the first pore center to a neighbor
pore center through the connection of the medial axis. As
seen in Fig. 11(b), the regular topological structure of the pore
network is then extracted, revealing that the FSMA algorithm
is applicable to three-dimensional porous media. Apart from
the regular model, as depicted in Fig. 12, an irregular sphere-
packing model is used to test the feasibility of the FSMA
algorithm in a more complex porous medium, and it performs
well.

4. Conclusions
In this study, a pore-network extraction algorithm called

FSMA is proposed. The FSMA algorithm is developed in
a continuous space rather than a pixel-based space, which
makes it a pixel-free method. This algorithm adopts the idea
of dimensionality-reduced search, making it unnecessary to
calculate the global data for each pixel point. Thus, the
algorithm has a substantially shorter computational time than
traditional methods. In traditional search procedures, each
point is calculated in the void space, whereas in the FSMA
search procedure, only a few points need to be considered. In
addition, the computation is further accelerated using neighbor
search. Theoretically, the FSMA algorithm extracts pore net-
works with low computational complexity and high efficiency.
These features are highly advantageous in large-scale pore-
network extraction, and this algorithm enables the charac-
terization of the PNM of a reservoir with a representative
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Fig. 9. Test cases of (a) a straight tube and (b) a elbow tube for FSMA algorithm featuring dead-end corners.
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Fig. 10. Pore-network extraction within (a) closed (solid) and (b) open boundaries.
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Fig. 11. Three-dimensional regular sphere-packing model and extracted medial axes: (a) beginning state and (b) extended state.
Blue line represents the medial axis, and red point represents the pore center.
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(a) (b)

Fig. 12. Three-dimensional irregular sphere-packing model and extracted medial axis: (a) beginning state and (b) extended
state. Blue line represents the medial axis, and red point represents the pore center.

elementary volume.
Specific computational programs are introduced for two-

and three-dimensional spaces, and cases involving two- and
three-dimensional porous media are constructed to verify the
feasibility of the FSMA algorithm. The results indicate that
the topological structure of the pore network is identified
and the pore and throat centers are determined accordingly.
Furthermore, according to a discussion of the boundary con-
dition for the FSMA algorithm, the algorithm has the natural
advantage of being able to search dead-end corners in porous
media. Dead-end pore centers are identified by changing the
determination conditions of the algorithm for searching critical
points, which could be useful for studying multi-phase flow.
Additionally, the algorithm performs well in both closed-
and open-boundary tests. In conclusion, the pixel-free pore-
network extraction algorithm FSMA can extract pore networks
at high theoretical computational speeds and therefore has
considerable potential for addressing large-scale geo-energy
problems.
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