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Abstract:
This paper presents a hybrid deep learning framework that combines graph neural networks
with convolutional neural networks to predict porous media properties. This approach
capitalizes on the capabilities of pre-trained convolutional neural networks to extract n-
dimensional feature vectors from processed three dimensional micro computed tomography
porous media images obtained from seven different sandstone rock samples. Subsequently,
two strategies for embedding the computed feature vectors into graphs were explored:
extracting a single feature vector per sample (image) and treating each sample as a node
in the training graph, and representing each sample as a graph by extracting a fixed
number of feature vectors, which form the nodes of each training graph. Various types
of graph convolutional layers were examined to evaluate the capabilities and limitations
of spectral and spatial approaches. The dataset was divided into 70/20/10 for training,
validation, and testing. The models were trained to predict the absolute permeability of
porous media. Notably, the proposed architectures further reduce the selected objective loss
function to values below 35 mD, with improvements in the coefficient of determination
reaching 9%. Moreover, the generalizability of the networks was evaluated by testing their
performance on unseen sandstone and carbonate rock samples that were not encountered
during training. Finally, a sensitivity analysis is conducted to investigate the influence
of various hyperparameters on the performance of the models. The findings highlight
the potential of graph neural networks as promising deep learning-based alternatives for
characterizing porous media properties. The proposed architectures efficiently predict the
permeability, which is more than 500 times faster than that of numerical solvers.

1. Introduction
Understanding fluid flow processes in porous media plays

a crucial role in various fields, as they directly affect var-
ious industrial applications, such as contaminant treatment
in ground water aquifers (Essaid et al., 2015), hydrocarbon
recovery (Guo et al., 2019; Shapoval et al., 2022, 2023),
and geologic carbon storage and sequestration (Iglauer et
al., 2015; Ershadnia et al., 2020). These applications rely
on the accurate characterization of the properties of porous
media, which encompass a range of rock and fluid properties.
In recent years, substantial efforts have been dedicated to
studying both the macroscopic and microscopic properties of

the subsurface (Ding et al., 2019, 2023; Wang et al., 2019) to
optimize resources and design efficient subsurface engineering
systems. Accurate characterization of porous media properties
is of paramount importance, as it provides valuable insights
that can lead to the development of innovative techniques for
geothermal energy extraction (Ijeje et al., 2019), groundwa-
ter management, and remediation (Al-Hashimi et al., 2021),
as well as benchmarking enhanced oil recovery techniques
(Brantson et al., 2020; Shapoval et al., 2022).

Porous media properties can be broadly classified into
statistical and dynamic properties. Statistical properties such
as porosity, tortuosity, average pore size, and specific surface
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area provide insights into the geometric characteristics of the
porous media. These properties can be determined through
direct laboratory measurements and micro-computed tomog-
raphy (micro-CT) image analysis techniques at the micro-
and micro-scale, respectively. On the other hand, dynamic
properties refer to properties of porous media that relate to
how fluids interact, move through, and are influenced by the
porous structure over time. One of the most important dynamic
properties is permeability, which characterizes the ability of
porous medium to transmit fluids within the porous structures.
The formation and evolution of permeability are influenced
by the various geological conditions under which subsurface
rocks exist (Cheng et al., 2021).

The accurate quantification of permeability is challeng-
ing because of the complex and heterogeneous nature of
porous media. Experimental approaches such as core-flooding
techniques (Perrin et al., 2009; Hussain et al., 2021) offer
direct measurements of core-scale permeability; however, they
may not capture the full complexity of the studied porous
medium. At the pore scale, permeability can be computed
using simplified techniques, such as pore network modelling,
which aims to represent porous media in terms of an idealized
network of balls (pores) and sticks (throats) (Ryazanov et
al., 2010; Gostick et al., 2019; Gerke et al., 2020). This allows
for an efficient numerical simulation of fluid flow and rapid
permeability computation. Despite their efficiency, permeabil-
ity computed using PNMs usually deviates from more complex
approaches because of the inherent simplification of these
methods. More complex and computationally demanding nu-
merical simulation techniques, such as finite element/volume
methods (Wang et al., 2021; Hussain et al., 2023), smoothed
particle hydrodynamics (Mohammadi and Riazi, 2022), and
lattice Boltzmann method (LBM) (Akai et al., 2020; Santos
et al., 2022), have been successfully employed to estimate
the pore-scale permeability of subsurface rocks by solving
the Navier-Stokes equation of flow. These simulation meth-
ods provide insights into fluid flow behavior, namely fluid
velocity fields, within porous structures, which allows for the
estimation of permeability with high accuracy under different
conditions.

Recent advancements in artificial intelligence, specifically
deep learning (DL), have enabled researchers to build robust
models for various challenging computational tasks, including
but not limited to image classification (Deng et al., 2009),
object detection (Redmon et al., 2016), semantic segmenta-
tion (Ronneberger et al., 2015), and video analysis (Tran et
al., 2015). More specifically, DL models have shown great
potential as surrogate models for characterizing porous media
properties. This is because of the capabilities of deep learning
models, mostly convolutional neural networks (CNNs), to
extract meaningful features from micro-CT images. These
models can capture intricate patterns and relationships within
the data, enabling the training of CNN models for various
classification and regression tasks related to porous media. For
example, multi-mineral classification can be accomplished by
deploying semantic segmentation using Deep CNNs (Wang
et al., 2020; Li et al., 2022). Moreover, researchers have been
able to rapidly classify the wettability of porous media surfaces

from two dimensional (2D) images of micromodels (Yun et
al., 2020). In terms of regression tasks, most implementa-
tions of CNN for porous media characterizations relate to
image-based prediction of statistical and dynamical properties
(Alqahtani, 2018, 2020; Graczyk and Matyka, 2020). Addi-
tionally, researchers have shown that incorporating physics-
based approaches, in which the model is fed with additional
physical features, can enhance the accuracy of CNN models
(Alqahtani et al., 2021; Gärttner et al., 2023). Other ap-
proaches, such as PoreFlow-Nets (Santos et al., 2020), aim to
regress the velocity field values instead of directly predicting
macroscopic properties. Recently, a comprehensive literature
review was published highlighting the latest advances in the
application of CNN-based approaches to pore-scale porous
media modelling (Li et al., 2023).

Despite the evident popularity of CNNs for the image-
based regression of porous media properties, they are restricted
to operating on uniform grids and require training inputs of
fixed dimensions. Techniques such as resizing and cropping
are not valid, as they cause loss of image features, which are
important when evaluating properties, especially dynamical
properties. DL methods that operate on unstructured data
and hence accept variable input sizes can provide an alter-
native that can mitigate some of the pitfalls of CNNs. For
example, PointNet is a pioneering deep learning architecture
designed to directly process point cloud data without the
need for voxelization or other preprocessing steps. It captures
the spatial distributions and properties of point clouds by
applying a series of symmetric functions, and has been widely
used in tasks such as object classification (Qi et al., 2017)
and recognition (Wu et al., 2020) in three dimensional (3D)
datasets. With respect to pore-scale modelling, a PointNet-
based approach has been proposed to predict porous media
properties from point cloud representations of porous media
(Kashefi and Mukerji, 2021). In this approach, the authors
extracted the point cloud coordinates of the rock surface from
binary images and used them to train the PointNet architecture
to regress the permeability of the input point clouds. Another
DL approach that has gained popularity in recent years is
graph neural networks (GNNs), which can learn from graph-
structured data. These networks have been utilized in various
computer vision tasks such as segmentation (Liu et al., 2021),
scene analysis, scene generation, and motion detection and
tracking (Ashual and Wolf, 2019; Liang et al., 2020). The
applicability of GNNs can be extended to almost any problem
that can be modelled (represented) by graphs or a graph
of interconnected networks of nodes and edges, such as
problems related to quantum and molecular chemistry (Gilmer
et al., 2017), biological network analysis (Ding et al., 2023),
and web-scale recommendation systems (Ying et al., 2018).
Mesh-based GNNs have also been implemented to accurately
model various complex physical processes such as fluid flow
dynamics, airfoil aerodynamics, and mechanical deformation
(Pfaff et al., 2021). At the reservoir scale, GNNs have recently
been employed for reservoir-scale simulations of multiphase
fluid flow (Jiang and Guo, 2023). The first study to investigate
the applicability of GNNs in pore-scale modelling of porous
media was conducted by Cai et al. (2023). The researchers
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Fig. 1. Visualization of the selected sandstones showing (top) 2D slices of the binary rock image of size 1,0002 pixels,
where 1 = rock matrix (white) and 0 = pore (black), (middle) 3D sub-volumes of size 1003 cubic voxels, where the brighter
regions represent the rock and the darker, but slightly transparent, regions represent the pore space, and (bottom) velocity fields
throughout the corresponding pore space obtained from the LBM flow simulations.

Table 1. Summary of the properties of the seven sandstone rocks selected for model training.

Rock Label Porosity (%) Tortuosity SSA (1/µm) APS (µm3) Kexp(mD)

Bandera BANDERA 18.56 1.72 0.0637 15,088 386

Bentheimer BH 22.64 1.64 0.0469 58,499 86

Berear BEREA 18.56 1.96 0.0533 23,543 121

Castle gate CG 26.54 1.33 0.0530 37,067 269

Kirby KIRBY 19.95 1.59 0.0293 21,830 62

Leopard LEO 20.22 2.00 0.0381 38,058 327

Parker PAR 14.77 2.12 0.0466 13,445 10

represented pore space in terms of persistence-based Morse
graph representations and trained equivariant graph neural
networks to predict the formation factor and effective perme-
ability tensors.

The main contribution of this work is to present Pore-GNN,
a novel GNN-based framework for predicting the properties
of porous media. The proposed architectures demonstrate that
by leveraging the powers of pre-trained CNNs as backbone
feature extractors, image features can be embedded into graph-
structured data, and GNN models composed of various graph
convolutional layers (GConv) can be trained to predict sub-
sample permeabilities. In addition, two approaches for graph
construction were investigated: sample as a node and sample
as a graph, and for GNN training, node-level, and graph-level
regression tasks. The models were validated by comparing the
model prediction to the ground truth values of permeability
obtained by running single-phase LBM flow simulations on the
entire dataset. In addition, the performance of the models was
compared with that of a baseline CNN in terms of predicting
the permeability of unseen rock sandstone and carbonate
samples. This work demonstrates that building GNNs on top of
CNN feature extractors can further improve model prediction

accuracy. Finally, a sensitivity analysis was conducted to
discuss the effect of hyper-parameters on the performance and
accuracy of the proposed models.

2. Dataset
A dataset of different sandstone rock micro-CT images

published on the Digital Rocks Portal (Prodanovic et al., 2015)
was utilized to train the models, which originally contained 11
different sandstone rock samples (Lucas-Oliveira et al., 2020;
Neumann et al., 2021). Seven of these rocks were chosen,
which had varying ranges of porous media properties. The
original micro-CT images had a size of 1003 voxels and a
resolution of 2.25 µm3/voxel. Raw grayscale images were
processed by the publisher and segmented into binary images
with a rock matrix = 1 and pore = 0. Typically, to train deep
neural networks for porous media property predictions from
3D input images, the original images are cut into subsamples
(cubes) of smaller sizes, ranging from 803 to 1303 voxels, de-
pending on the available memory and computational resources
(Santos et al., 2020; Alqahtani et al., 2021). Therefore, the
selected input image size for the experiment was 1003 voxels,
resulting in 1,000 subsamples for each full-rock image (7,000
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Fig. 2. Illustrations of (a) distribution of permeability of subsamples of size 1003 cubic voxels of each rock type and (b)
reduced features to three arbitrary dimensions using Principal Component Analysis.

images in total). A visualizations of the dataset is shown in
Fig. 1. The properties of the seven sandstone rocks are shown
in Table 1.

3. Methods
In this section, the numerical simulation method of fluid

flow physics, CNN feature extractor and baseline CNN, train-
ing graph construction approaches, and proposed Pore-GNN
architectures are highlighted.

3.1 Numerical fluid flow simulation
Direct numerical simulations were performed using LBM,

which is one of the most popular methods for simu-
lating fluid flow through irregular porous media domains
(d’Humires, 2002; Akai et al., 2020; Santos et al., 2022).
This method provides a solution for the Navier–Stokes flow
equation by simulating the streaming and collision of fluid
particles on a grid. The Boltzmann equation is expressed as:

∂ f
∂ t

+ v
∂ f
∂x

+F
∂ f
∂v

=

(
∂ f
∂ t

)
coll

(1)

where f is the probability density function (PDF) of the bulk
molecules, x is the position vector, v is the velocity vector,
F is the external force vector, t is time, and (∂ f/∂ t)coll is
the molecular collision term. The equation models the change
in the PDF over time by allowing each node of the domain
to host the fluid particles represented by the PDF, which can
be used to calculate the velocity field throughout the porous
domain. Typically, either the Bhatnagar-Gross-Krook collision
term (Bhatnagar et al., 1954) or the Multiple-Relaxation-Time
collision term (d’Humires, 2002) can be applied, which are
responsible for relaxing the fluid distribution functions towards
the equilibrium state at each lattice node.

The simulation of fluid flow in each porous subsample
was performed in the x-direction and under laminar flow
conditions, restricting the Reynolds number to less than one.
In addition, small constant lattice pressure boundaries were
imposed. The converged LBM solution represents the steady-
state flow, and the average velocity of the resulting velocity

fields, as shown in Fig. 1 (bottom), can be used to solve the
Darcy equation for permeability, as shown in the following
equation:

k =
v
µ

dp
dx

(2)

where k is permeability, v is the average velocity in the
direction of the pressure gradient dp/dx, and µ is the dynamic
viscosity of the fluid. Permeability has units of length squared
and is typically measured in m2 or Darcy (D). In this equation,
x represents the length of the sample, in contrast to x in Eq.
(2), which is a vector representing to the spatial position in the
simulation domain. The simulation was run under the same
conditions for all 7,000 subsamples and their permeabilities
were calculated. The distributions of the subsample perme-
abilities for each rock type are shown in Fig. 2(a). These rock
types and subsample sizes were purposefully selected to allow
a wide range of permeability values to be used as labels to
build a comprehensive training dataset.

3.2 Convolutional neural networks
Deep CNNs have revolutionized artificial intelligence

model capabilities for computer vision tasks, such as image
classification, facial recognition (Taigman et al., 2014), speech
recognition (Alsobhani et al., 2021), and natural language pro-
cessing (Wang and Gang, 2018). Moreover, numerous studies
have been shown CNNs capabilities to model porous media
properties and serve as efficient substitutes for traditional
numerical modeling approaches (Alqahtani et al., 2020, 2021;
Rabbani et al., 2020; Santos et al., 2020). They operate on
uniform grids, that is, with constant spacing between all
adjacent grid units, which makes them suitable for processing
1D series, 2D images, and 3D volumes.

The core concept of CNNs relies on the application of
convolution operations that involve sliding a small filter across
the input data, known as a kernel. The filter performs element-
wise multiplication with a local receptive field, as it slides over
the input data, resulting in trainable feature maps. Typically,
CNNs are composed of multiple convolutional layers stacked
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Fig. 3. Architecture visualization of baseline CNN.

Table 2. Architecture of baseline CNN used to predict permeability values.

Layer Type Input size Kernel Options Trainable parameters

1 Input 100 × 100 × 100 × 1 / Normalization 0

2 Convolutional 96 × 96 × 96 × 8 3 × 3 × 3 Max pool 5 × 5 × 5 + BN 1,024

3 Convolutional 42 × 42 × 42 × 16 3 × 3 × 3 Max pool 5 × 5 × 5 + BN 16,048

4 Convolutional 15 × 15 × 15 × 32 3 × 3 × 3 Adaptive max pooling 64,096

5 Fully-connected 6 × 6 × 6 × 32 / ReLU activation + BN 3,539,456

6 Fully-connected 1 × 1 × 512 / ReLU activation + BN 66,688

7 Output 1 × 1 × 128 / Denormalization 129

Total / / / / 3,623,345

Notes: All layers, except the input and output layers, include ReLU activation and an optional batch normalization
(BN) layer.

on top of one another. A rectified linear unit (ReLU), batch
normalization, and pooling operations are commonly used to
reduce possible overfitting, owing to the high model complex-
ity as the number of layers increases. Fully connected (FC)
layers can be used to flatten the resulting feature maps and
feed them into a one-dimensional vector of the required size.

Fig. 3 shows the visualization of the architecture of the
baseline CNN layers. Further details regarding the dimensions
and the number of trainable dimensions of each layer are
presented in Table 2, which was trained to predict the perme-
ability of porous media using binary rock images as the input.
The model comprises a series of convolutions, ReLU, batch
normalization layers, max-pooling layers connected to an FC
layer, and a prediction head that predicts a single permeability
value. The convolutional layers produce an increasing number
of feature maps as the network deepens, whereas the pooling
layers reduce the spatial dimensionality. The last convolutional
layer is followed by an adaptive max-pooling layer that pools
the input feature map into the desired output size, in Table
2, the output size is [6, 6, 6, 32]. Moreover, the last FC
layer before the prediction head is designed to produce output
vectors of shape 128. These design choices were applied so
that the trained CNN could be utilized as a feature extractor
for embedding the initial node representation of the training
graphs, for different regression tasks, as explained in the
following section. Fig. 2(b) shows an illustration of the training
dataset obtained by (1) removing the output layer from the pre-

trained baseline CNN, (2) running the trained baseline CNN
on the entire dataset, resulting in 128-dimensional vectors for
all samples in the dataset and, (3) reducing the dimensionality
of each sample (node) feature to three arbitrary dimensions
using principal component analysis (Pearson, 1901; Jolliffe
and Cadima, 2016). Finally, the 3D scatter points were plotted
and colored based on the corresponding permeability values
of the sample in mD. As shown in the figure, two linear trends
can be observed, within which data exist in the reduced space.
Moreover, there was a clear separation between clusters based
on the permeability values, indicating nonarbitrary positioning
within the reduced 3D spaces.

3.3 Training graphs construction
The novelty of this GNN-based approach lies in the alter-

ation of the input data representation from 3D grid-structured
to graph-structured data. Two approaches for constructing
training graphs were examined: 1) sampling as a node and
2) sampling as a graph. This was performed to allow building
of GNN models that can be trained for both node- and graph-
level regression tasks, respectively. The models are explained
in detail in the next section.

In the first approach, the 128-dimensional output of the
last FC layer of the pre-trained CNN was generated and used
as the input node (sample) features. A graph of the entire
dataset is created by constructing edges between nodes in
128-dimensional space using the K-nearest neighbor (KNN)
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Fig. 4. Illustration of node-level Pore-GNN architecture. All binary images in the dataset of size N were fed into the pre-trained
CNN model to extract 128-dimensional feature vectors for each image. A training graph was constructed by embedding 128
features as the initial node embeddings. The three GConv layers were trained to transform the initial embeddings into final
node embeddings (permeability).

Table 3. Summary of the four graph convolutional layers used to build GNN-based models.

Type Name Update rule Reference

Spectral
GCN X ′ = D̂− 1

2 ÂD̂− 1
2 Θ Kipf and Welling (2017)

ChebNet X ′ = ∑
k
k=1 Z(k) ·Θ(k) Defferrard et al. (2017)

Spatial
WL-GNN x′i =W1xi +W2 ∑ j∈N(i) e j,i · x j Morris et al. (2021)

GraphSAGE x′i =W1xi +W2 ·mean j∈N(i)x j Hamilton et al. (2018)

algorithm (Goldberger et al., 2004), where each node has a
predefined number of neighbors (edges). On the other hand,
the second approach aims to model each sample as a graph,
allowing more feature comprehension within each sample. In
other words, instead of representing each image by a node
with a feature vector of size 128, to build a single graph
for each sample, the selected output shape of the adaptive
pooling layer is [6, 6, 6, 32]. These graphs can have 6 × 6 × 6
nodes, each with feature vector of size 32. Similar to the first
approach, edges are constructed between nodes using KNN
algorithms based on the relative distance between nodes in
32-dimensional space. The size of the feature vectors and the
number of nearest neighbor nodes are hyperparameters that
can affect the overall model performance. The influence of
these hyperparameters is discussed in the sensitivity analysis
subsection of the results.

For each graph G = {V,E}, where is the set of nodes, and
E is the set of edges, a feature matrix X is created. In the
node-level task, G represents a graph of the entire dataset,
whereas X contains node features of shape [N,N f ] where N is
the number of nodes and N f is number of features. Edge matrix
E is created using a coordinate format representation between
neighboring nodes, which is established using the KNN al-
gorithm. When building graphs for the graph-level regression
task, each G represents a single rock sample (image); hence,
more information was incorporated to describe each sample.

3.4 Graph neural network
GNNs can be classified as spatial or spectral GNNs.

Spatial GNNs capitalize on local neighborhood information to
aggregate and propagate features across graphs. The features

of the direct neighbors are aggregated, typically using a
weighted-sum operation. They are particularly effective for
solving tasks that require capturing local dependencies and
information diffusion, making them suitable candidates for
microscale porous media modeling. Numerous spatial GNNs
can be implemented for this task, of which the Weisfeiler
Leman (WL-GNN) (Morris et al., 2021) and GraphSAGE
(Hamilton et al., 2018) were selected for the experiment.

On the other hand, spectral GNNs leverage the spectral
properties of the graph Laplacian matrix to process graph-
structured data. This approach is based on graph theory
and utilizes the eigenvalues and eigenvectors of the graph
Laplacian matrix to transform graphs into a spectral domain.
Convolution can be performed in the spectral domain by
applying element-wise multiplication of the transformed data
and spectral filters. This type of GNNs can capture global
structural information and propagate it through a graph by
applying a series of spectral convolutions. This renders spectral
GNNs suitable for tasks that require global structural patterns.
For the spectral layers of choice, graph convolutional network
(GCN) layers (Kipf and Welling, 2017) and Chebyshev net-
work (ChebNet) (Defferrard et al., 2017) were selected.

Table 3 summarizes of the graph convolutional layers used
in this study, along with the equations used to update the node
embeddings. As demonstrated in the table, spectral GNNs
calculate a single updated feature matrix X ′ that represents all
graph nodes of the corresponding layer. Each layer has a single
learnable parameter matrix in spectral region, denoted by Θ.
In GCN, the normalized adjacency matrix, Â, the normalized
degree matrix, D̂, and are both obtained by adding self-loops
to nodes by adding the identity matrix, I, to the adjacency ma-
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Table 4. Metrics for evaluating model regression accuracy.

Metric Formula

MAE
∑

N
j−1

∣∣(A j ·Pj)
∣∣

N

RMSE

√
∑

N
j−1(A j −Pj)

2

N

MSE
∑

N
j−1(A j −Pj)

2

N

R2 ∑
N
j−1(A j −Pj)

2

∑
N
j−1(A j −A)2

trix, A. Z(k) in the ChebNet denotes the kth-order Chebyshev
polynomial of the scaled and normalized graph Laplacian. In
contrast to spectral convolutions, spatial methods individually
compute each node embedding x′i. In addition, these methods
have a learnable node weight matrix W1 and neighbors weight
matrix W2. Moreover, neighbor node features are denoted as x j,
whereas edge features can be incorporated into spatial GNNs,
denoted as e j,i. References are included in the table for further
details.

3.4.1 Node-level Pore-GNN

The overall architecture of the node-level Pore-GNN is
illustrated in Fig. 4. In node-level regression tasks, the pre-
trained CNN feature extractor was designed to output a 128-
dimensional feature vector for each input sample. A single
dataset graph containing N nodes, where N is the number
of samples in the dataset. Subsequently, the pre-trained fea-
tures were used as initial node embeddings, and edges were
constructed using the KNN algorithm based on the relative
distance between nodes in the 128-dimensional space. Next,
the resulting graph was split into 70%, 20%, and 10% for
training, validation, and testing, respectively. Three GConv
layers were stacked, each followed by ReLU activation, to
update the node embeddings, which were the input, hidden,
and output layers. The input layer accepts a graph with node
features of shape [N,128] and updates the embeddings to the
chosen hidden layer size. Finally, the output layer updates
the embeddings to a single value per node, which represents
normalized permeability.

After the training was completed, the model weights were

saved, and predictions can be made for the testing samples. For
a new sample (node), the pre-trained feature extractor was first
run to obtain a 128-dimensional representation of the sample.
Subsequently, a new mini-graph was constructed using the
K-nearest training nodes in the dataset graph based on their
positions in the 128-dimensional space. Finally, the trained
GNN is executed to aggregate the neighbors’ information and
regress the permeability of the new node. The sensitivity of
the proposed architecture to the hidden layer dimensions is
discussed in the results section.

3.4.2 Graph-level Pore-GNN

A graph-level architecture is proposed to train the GNNs
to perform graph regression tasks, as illustrated in Fig. 5. A
single graph is constructed for each sample in the training
dataset. In this scenario, the pre-trained CNN feature extractor
outputs 216 32-dimensional feature vectors that can be used
to construct sample graphs with 216 nodes and 32 node
features. Then, the graph convolutional layers, each followed
by ReLU, update the node embeddings in a manner similar
to the node-level Pore-GNN approach, but with the output
of the last graph convolutional layer having a size equal
to the hidden layer size instead of one, which is used to
predict the node-level permeability. To predict a single value
for each graph, the output of the last graph convolutional
layer is fed into the graph pooling layer. The pooling layer
reduces graph size while retaining its essential features. In
sum, product, and mean graph pooling, the node features are
added, multiplied, and averaged, respectively, to obtain a single
vector representation of the graph. The resulting vector is
then input into a fully connected prediction head to predict
the desired output. The type of pooling layer is an additional
hyperparameter discussed in the sensitivity analysis section of
the results.

3.5 Training, validation, and testing
First, the backbone CNN was trained to predict the per-

meability of the binary images. The original data, comprising
7,000 images, were split into 80% for training and 20% for
testing. Validating the baseline CNN was deliberately ignored,
as it is beyond the scope of this study. The CNN was trained
using the mean absolute error (MAE) as the objective loss
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Table 5. Summary of different hyperparameters used for conducting the experiment.

Architecture Hyper-parameter Values

GConv layer GCN, ChebNet, WL-GNN, GraphSAGE

Both Hidden layer size 16, 32, 64, 128

Learning rate 10−3, 10−4, 10−5

Node-Level Pore-GNN Pre-trained features size 36, 64, 128, 256

Graph-Level Pore-GNN Graph pooling layer Sum, Max, Mean
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Fig. 6. Training MAE loss of (a) node-level Pore-GNN and (b) graph-level Pore-GNN obtained using different graph
convolutional layers.

function. Additionally, the root mean squared error (RMSE),
mean squared error (MSE), and coefficient of determination
(R2) were recorded between the model prediction and labels,
that is, the ground-truth values of the normalized permeability.
A summary of the mathematical formula for computing each
error metric is presented in Table 4, where A j is actual value
of the jth sample, Pj is the predicted value, and N is the
total number of samples. During each forward propagation,
the model predicts a single value of permeability based on
randomly initialized weights. In the backpropagation step, the
loss is calculated, and the optimizer is utilized to propagate
changes (gradients) to the model weights, thereby reducing
the objective loss function. The Adam optimizer was selected,
which is an adaptive optimization algorithm that adjusts the
learning rates for each parameter individually based on the
moments of the gradients (Kingma and Ba, 2017). The model
was trained for 100 epochs, that is, 100 full iterations of
forward and backward propagation over the entire training
dataset. At the end of each epoch, model predictions were
made on the validation dataset, and validation error metrics
were recorded.

After training the baseline CNN, two feature extractors
were created, using the outputs of layers 7 and 5 as shown
in Table 2, as the output of the feature extractor CNN for
the node-level and graph-level regression tasks. The train-
ing graphs are then created using the methods described

in Section 3.3. In both approaches, the dataset was split
into 70%, 20%, and 10% datasets for training, validation,
and testing, respectively. MAE was also used as the loss
function along with the Adam optimizer. With each forward
propagation, each graph convolutional layer updates the node
representation by aggregation and transformation operations,
which are differentiable, allowing gradients to flow through
the model Because the proposed architecture significantly
reduces memory and computational requirements, the models
can be trained efficiently using a single graphic processing
unit (GPU); thus, the models were trained for 1,000 epochs.
However, only the model that achieved the lowest loss on the
validation dataset was saved. The experiment was set such that
the impact of several hyper-parameters can be investigated, as
summarized in Table 5, such as the type of graph convolutional
layers, the network hidden dimensions, the number of nearest
neighbors used to construct the training graphs, and the size
of the pre-trained feature vectors in the node-level Pore-GNN.
For the graph-level Pore-GNN, the model was trained using
various graph pooling layers, and the findings are summarized
in the sensitivity analysis of the results section.

To perform CNN and GNN operations computationally,
PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey
and Lenssen, 2019) open-source Python libraries were utilized,
which facilitate tensor and graph operations, respectively.
Training was performed using a single 24 GB GeForce RTX
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Table 6. Summary of training, validation, and testing results.

Architecture GConv layer

MAE (mD) R2

Training Validation Testing Training Validation Testing

Baseline-CNN CNN 44.3 48.6 50.5 0.8573 0.8442 0.8420

GCN 42.6 51.7 50.9 0.8692 0.8175 0.8523

LNode-Level
Pore-GNN

ChebNet 33.4 46.4 47.2 0.9092 0.8727 0.9024

WL-GNN 39.1 48.7 46.0 0.8959 0.8612 0.8875

GraphSage 40.5 43.9 44.1 0.9199 0.8748 0.8969

GCN 40.2 48.5 50.8 0.9038 0.8971 0.8780

Graph-Level
Pore-GNN

ChebNet 30.2 37.7 40.2 0.9355 0.9212 0.9195

WL-GNN 35.9 43.3 42.0 0.9140 0.9012 0.8910

GraphSage 41.5 45.1 46.5 0.9259 0.9104 0.8964

3,090 GPU; however, the developed models can be trained
using the central processing unit (CPU) within a reasonable
timeframe, compared to training the baseline CNN on the
CPU. In the following section, the results of the model
performance during training and validation of the proposed
architecture, results of testing the model on unseen samples,
sensitivity analysis of the impact of hyperparameters, and
a discussion of the required memory and computational re-
sources are discussed.

4. Results

4.1 Training and validation performance
The models were trained using the MAE as the objective

loss function. Fig. 6 shows the training and validation perfor-
mances of the node-level and graph-level Pore-GNN networks
after every epoch. These results represent the best performance
models built with the optimal hyperparameters, as discussed
in Section 4.3. Overall, both architectures achieved an MAE
of less than 50 mD on the training and validation datasets
by using various graph convolutional layers. As shown in
the figure, graph-level Pore-GNNs built with ChebNet layer
managed to reduce the training loss to 30.2 and 37.7 mD for
training and validation dataset, respectively. A summary of
the resulting MAE losses at the end of the training and R2 for
all networks is presented in Table 6. Implementing the Pore-
GNN architectures improved the computed R2, compared to
the baseline model, within ranges from 2%-7.9% for the node-
level Pore-GNN and 5.6%-10.5% for the graph-level Pore-
GNN architecture. These improvements in MAE and R2 are
indicative of higher accuracies compared to the baseline CNN
and, hence, improved predictive performance. The stability
of MAE throughout the training phase, as shown in Fig.
6, indicates reduced uncertainty, even when testing on the
validation dataset that was used during training to compute
the errors, but not used to train the model, that is, weight
computations.

4.2 Models testing
To validate the trained models, the predicted normalized

permeability values were compared with the actual values and
the R2 coefficient was used to evaluate the fit of the data.
Figs. 7 and 8 illustrate the best achieved model accuracy
based on the training, validation, and testing datasets for the
node-level and graph-level regression Pore-GNN architectures,
respectively. As shown in these figures, all graph convolutional
layers regressed the permeability of porous media, with vary-
ing degrees of accuracy. Generally, the graph-level regression
Pore-GNN performs better than the node-level architecture as
well as the baseline CNN. This was expected because the
network was fed with more information about each subsample
in the graph-level architecture, i.e., assisting the model to
capture more complex topological relationships within pore
space regions. This comes at an additional memory cost, as
opposed to the node-level task, where the entire dataset can
be loaded and trained using a single GPU. Further discussion
regarding the memory and computational requirements is
included in Section 4.4.

Testing of the best model was extended to predict the
permeabilities of unseen samples, i.e., rock samples that were
not encountered during the training of the models. For this
purpose, two sandstone samples were utilized, namely Bandera
Gray (BG) and Buff Berea (BB), which were published with
the rest of the samples, but not used for training. Additionally,
a carbonate sample, Indiana limestone (IL), was imaged using
the Tyree X-ray facility at the University of New South Wales,
Sydney. A summary of the unseen testing rocks is presented
in Table 7. As shown in the table, the permeabilities of the
full testing core samples are spread over the entire range of
permeabilities of the training samples, as shown in Table 1,
where BG resembles the lower end (9 mD) and BB resembles
the upper end (275 mD), while IL falls somewhere in between
them. Additionally, the IL sample was included to test the
robustness of different models when encountering varying and
more complex microstructures, namely carbonates. Moreover,
because the IL sample was imaged separately, it had a different
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Fig. 7. Illustrations of the accuracies node-level Pore-GNN architectures based on (a), (d), (g), (j) training, (b), (e), (h), (k)
validation, and (c), (f), (i), (l) testing. The x-axes show the actual normalized permeabilities obtained from LBM simulation,
while the y-axes represent the normalized permeability predicted using different graph convolutional layers.
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Fig. 8. Illustrations of accuracies of graph-level Pore-GNN architectures based on (a), (d), (g), (j) training, (b), (e), (h), (k)
validation, and (c), (f), (i), (l) testing. The x-axes show the actual normalized permeabilities obtained from LBM simulation,
while the y-axes represent the normalized permeability predicted using different graph convolutional layers.



50 Alzahrani, M. K., et al. Advances in Geo-Energy Research, 2023, 10(1): 39-55

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
Pre

dic
ted

A c t u a l

R 2  =  0 . 8 7 5 4

C N N( a )
Ba

nde
ra 

Gr
ay

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 8 9 9 3

N o d e - l e v e l  P o r e - G N N( b )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 8 4 2 5

G r a p h - l e v e l  P o r e - G N N( c )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 8 9 1 1
( d )

Bu
ff B

ere
a

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 9 0 8 7
( e )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 8 8 5 7
( f )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 8 8 2 1
( g )

Ind
ian

a L
im

est
one

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 9 0 4 6
( h )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pre
dic

ted

A c t u a l

R 2  =  0 . 8 4 4 5
( i )

Fig. 9. Testing results on unseen Bandera Gray (a), (b), (c) and Buff Berea (d), (e), (f) sandstones samples in addition to
Indiana Limestone (g), (h), (i) samples. These results are obtained from (a), (d),(g) Baseline CNN, (b), (e), (h) Node-level
Pore-GNN, and (c), (f), (i) Graph-level Pore-GNN.

Table 7. Summary of the properties of the two unseen sandstone and carbonate rock samples used for testing.

Rock Label Porosity (%) Tortuosity SSA (1/µm) APS (µm3) Kexp(mD)

Bandera Gray BG 18.10 1.95 0.0375 14,838 9

Buff Berea BB 24.02 1.55 0.0621 32,159 275

Indiana Limestone IL 18.00 1.77 0.0589 28,500 113

resolution of 3.4 µm3/voxel, meaning that extracting cubes of
size 1003 voxels would capture more than the length scale
used for training, measured in µm. Therefore, cubes of size
663 voxels were extracted from the IL sample and rescaled
(coarsened) to 1003. Thus, the input length scale for testing is
ensured to match the length scale used for training.

After processing the sandstone and carbonate images, 300
random sub-samples of size 1003 voxels were extracted, and
then, CNN-based feature extractors were applied to compute

the pre-trained features. Next, the models were tested, and
predictions were made in a manner akin to that described
in Section 3.4, for both node-level and graph-level Pore-
GNN. The results of the best-performing models for node-
level and graph-level Pore-GNN architectures on the unseen
samples are shown in Fig. 9. The best model was able to
predict the permeabilities BG sandstone samples with R2 of
0.87 and 0.89 for the node-level and graph-level Pore-GNN,
respectively, outperforming the baseline CNN with 4%-6.7%
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Fig. 10. Sensitivity analysis results showing the effect of (a) hidden layers size, (b) learning rate, (c) number of nearest
neighbors, and (d) size of the pre-trained feature vectors in node-level Pore-GNN. The red solid and dashed lines represent
the hyper-parameter values that yield the lowest MAE for the node-level and graph-level Pore-GNN, respectively.

improvement. Similarly, the model predicts BB sandstone
samples permeabilities with R2 of 0.89 and 0.91 for the node-
level and graph-level Pore-GNN, respectively. On the other
hand, the IL carbonate samples permeability were predicted
with R2 of 0.88 and 0.91 achieved by node-level and graph-
level Pore-GNN, respectively, using ChebNet as the graph
convolutional layer. In addition, the performance of the models
was compared with that of the baseline CNN for IL permeabil-
ity prediction. The proposed models were shown to improve
R2 by 7% for predicting carbonate sample permeability. In
summary, these results highlight the capabilities of GNNs to
further comprehend pre-trained features and map them to the
corresponding permeability labels, even when encountered by
unseen samples with different structures from those existing
in the training dataset.

4.3 Sensitivity analysis on the effect of
hyper-parameters

The robustness of the proposed models towards the hyper-
parameters tested was evaluated by performing a sensitivity
analysis on both node-level and graph-level regression tasks.
In this analysis, model performance was tested using different
hidden layer sizes, numbers of nearest neighbors to construct
the input graphs, and learning rates, as shown in Fig. 10.
Optimal hyperparameters are selected based on the combina-

tions that yield the lowest MAE, indicated by the solid and
dashed red lines in the figure, for node-level and graph-level
approaches, respectively. The results in the figure show the
best model performance, with Pore-GNN with ChebNet layers,
under variable hyperparameters. In addition, for node-level
tasks, the sizes of the pre-trained input features were tested.
The best models were achieved with 32 as the hidden layers
size, 0.001 as the learning rate, and five nearest neighbors.
In addition, the feature vector size that yielded the lowest
MAE is 128. Moreover, the influence of various graph pooling
functions was investigated. Overall, as shown in the figure,
the developed frameworks are not highly sensitive to the
studied hyperparameters, i.e., the highest standard deviation
caused by varying these parameters is 7.3 mD. With respect
to the selected pooling function, implementing the summation
pooling operation on top of graph convolutional layers yielded
the lowest MAE of 30.5 mD, while max pooling operation
yielded the lowest MAE of 38.7 mD.

4.4 Memory and computational requirements
Owing to the large size of the training data (7,000 3D

images), a custom data loader was implemented to pipeline the
data into the models during the training phase. These loaders
allow data to be loaded to the memory on a batch-by-batch
basis. The maximum batch size that was able to fit into a 24
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Table 8. A summary of the training and interference time of
the trained models.

Device Model Training time
(minutes)

Inference time
(ms/sample)

Baseline-CNN 153 48

GPU Node-level
Pore-GNN

13 39

Graph-level
Pore-GNN

17 42

Baseline-CNN 501 242

CPU Node-level
Pore-GNN

53 170

Graph-level
Pore-GNN

65 162

GB GPU was 16 samples per batch for the baseline CNN.
On the other hand, the single training graph for the node-level
Pore-GNN could fit into the memory all at once without mini-
batching. However, training graph-level Pore-GNN requires
batch training. Similar to training the baseline CNN, the max-
imum allowable batch size, using 128 GB of memory, was 16
samples per batch. Further reduction of the batch size to 8 was
attempted; however, the model started overfitting, increasing
MAE after approximately 300 epochs of training. Table 8
presents the training and inference times for each architecture
are shown. The training time is computed based on the total
time required to train the model over the entire training epoch,
whereas the inference time refers to the average time required
to the model on the entire dataset. In contrast, the reported
inference times do not include the feature extraction and
graph construction steps; instead, they represent the duration
required to generate predictions from pre-processed inputs.
Regardless, the average end-to-end inference times, including
feature extraction and graph construction, were 140 and 96
ms for the node-level and graph-level Pore-GNN architectures,
respectively. As shown in the table, the proposed architecture
significantly reduced the training time; however, it required
high memory availability compared to the CNN, especially for
the graph-level regression task. Once the models were trained,
both Pore-GNN architectures could efficiently predict the
permeabilities of the new samples, enabling accelerated porous
media characterization and reduced computational resources.
Notably, improvements of 407 and 527 times were achieved
for the node-level and graph-level Pore-GNN, respectively,
compared with the numerical LBM solver, which required an
average of 72.8 seconds to perform the simulations. These
improvements are computed based on the total prediction time,
including the feature extraction, graph construction time and
inference time for each method.

5. Conclusions
This paper presented Pore-GNN framework, a deep learn-

ing approach for characterizing the properties of porous media
from 3D micro-CT images. The proposed approach capitalizes
on CNN as the backbone feature extractor. Then, two strategies

were examined for embedding the extracted features into
the training graphs: (1) sampling as a node for node-level
regression tasks, and (2) sampling as a graph for graph-
level regression tasks. The results highlight the capabilities of
GNNs to improve the predictive performance of the baseline
CNN by 1.2%-7.2% for the node-level Pore-GNN and 4.3%-
9.2% for the graph-level Pore-GNN architecture. Moreover,
the developed architecture either matched or outperformed
the baseline CNN in predicting the permeability of unseen
samples of varying structures, namely BB and BG sandstones
in addition to IL carbonate sample.

Although the proposed architectures enhanced the pre-
dictive capabilities and outperformed the baseline CNN in
terms of efficiency and accuracy, they are still bound by
the same main limitation of CNNs, which is the inability
to process raw inputs of arbitrary dimensionality. This is
because the proposed models are hybrid models that depend
on CNN-based feature extractors. Additionally, increasing the
dimensions of the feature maps and number of features used
to build the training graphs can cause a significant increase
in computational requirements to a point where a single GPU
might not be able to load and process the entire dataset, which
might necessitate mini-batch training techniques. Future work
should investigate the feasibility of techniques such as adaptive
feature extraction or multi-resolution architectures to accom-
modate varying input dimensions. In terms of computational
requirements, optimization through parallelization strategies,
distributed training methods, or hardware acceleration can
be considered. Moreover, it would be interesting to exploit
physics-based graph learning by embedding pre-computed
physical properties of the training samples as node or graph
features for training GNNs.

Graph-structured data representations are routinely used
for pore-scale characterization. For future work, it is rec-
ommended that three main areas of interest be investigated:
(1) PNMs, (2) modelling of surface and interfacial porous
media properties, and (3) mesh-based numerical fluid flow
simulations. GNN-based approaches can provide a unique
road map for processing graph-structured data by capturing
the complex dependencies between the interconnected graph
nodes. Furthermore, a comprehensive comparative analysis of
unstructured deep learning techniques can provide valuable
insights into their strengths and weaknesses within the context
of porous media characterization problems.
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