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Abstract:
The accurate prediction of post-refracture production can be of great value in the selection
of target wells for refracturing. Given that production from post-refracture wells yields
time-series data, deep neural networks have been utilized for making these predictions.
Conventional deep neural networks, including recurrent neural network and long short-
term memory neural network, often fail to effectively capture long-range dependencies,
which is particularly evident in tasks such as forecasting oil well production over periods
extending up to 36 years. To overcome this limitation, this paper presents a novel deep
neural network based on Transformer architecture, meticulously designed by fine-tuning
the key components of the architecture, including its dimensions, the number of encoder
layers, attention heads, and iteration cycles. This Transformer-based model is deployed
on a dataset from oil wells in the Junggar Basin that spans the period of 1983 to 2020.
The results demonstrate that the Transformer significantly outperforms traditional models
such as recurrent neural networks and long short-term memory, underscoring its enhanced
ability to manage long-term dependencies within time-series data. Moreover, the predictive
accuracy of Transformer was further validated with data from six newly refractured wells
in the Junggar Basin, which underscored its effectiveness over both 90 and 180 days
post-refracture. The effective application of the proposed Transformer-based time-series
model affirms the feasibility of capturing long-term dependencies using Transformer-based
encoders, which also allows for more accurate predictions compared to conventional deep
learning techniques.

1. Introduction
Refracturing involves the reapplication of fracture treat-

ments to previously fractured wells to rejuvenate fracture
conductivity that has diminished due to phenomena such as
proppant embedment, fines plugging, or rock creep. Refrac-
turing can also create new fractures, activate existing natural
fractures, or connect a more extensive area of the reservoir
(Lu et al., 2020; Li et al., 2022; Abdelaziz et al., 2023; Liao
et al., 2024). Consequently, this technique serves as a vital
enhancement to traditional reservoir stimulation techniques
(He et al., 2021).

The success of refracturing critically depends on targeting

the right wells, with the accurate prediction of post-fracture
production being the cornerstone of this process. Despite its
conceptual simplicity, however, the well selection process is
still complex in practice because:

1) The geological conditions among wells are predominantly
discontinuous (Davies et al., 2023; Kakemem et al., 2023;
Shabani et al., 2023), which complicates the inference of
geological characteristics based solely on core analysis.

2) Due to reservoir heterogeneity and well interference
(Farhoodi et al., 2019; Faramarzi and Sadeghnejad, 2020;
Esfandi et al., 2024; Jamshidi Gohari et al., 2024), wells
take a long time to stabilize and pressure tests often fail
to yield conclusive results.
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3) Utilizing the detailed parameters of rock mechanics and
reservoir-specific data like porosity, permeability, thick-
ness, and geostress distribution, a geomechanical model
can be constructed using numerical simulation tools
(Malki et al., 2023; Cheng et al., 2024; Wang et al., 2024).
However, in older fields that have been exploited for
decades, acquiring accurate reservoir characteristic pa-
rameters is challenging and costly. Meanwhile, new geo-
logical exploration or in-situ coring are impractical.

4) Particularly gravel sandstone reservoirs, which are in the
experimental focus of this study, have more complex
subsurface fluid dynamics due to numerous mobile grains
and varied grain sizes (Yu et al., 2020). This complexity
makes it nearly impossible to find highly accurate analyt-
ical solutions for predicting production from re-fractured
wells in such reservoirs.

Given the above limitations, it is essential to explore
alternative methods for productivity prediction without the
knowledge of the reservoir characteristic parameters, such
as utilizing production statistics and type-curves (Reeves et
al., 2000). Production statistics evaluate individual well perfor-
mance within a region by comparing each well to its neighbors
to identify underperforming wells as potential refracturing can-
didates. This approach accounts for the full lifecycle of wells;
however, it does not effectively identify high-performing wells
that could benefit from refracturing. Additionally, in highly
heterogeneous reservoirs, production curves cannot differenti-
ate reservoir heterogeneity effects from completion practices.
Type-curves, on the other hand, estimate permeability and
skin factor using minimal data and facilitate selecting wells
with favorable characteristics for refracturing. However, type-
curve analysis is typically suited for homogeneous, single-
layer reservoirs and introduces uncertainties in multi-layered
structures, and estimating parameters like effective thickness
and porosity for each well can lead to inaccuracies.

Given this context, deep learning methods emerge as a
superior alternative due to their ability to discern complex
nonlinear relationships and their reliance on data-driven mech-
anisms. Production data from refractured wells inherently
constitute time-series data. Traditional time-series forecasting
methodologies, such as state-space models (McCausland et
al., 2011) and auto-regressive models (Kaur et al., 2023),
analyze each time series independently, requiring manual trend
identification. This constraint limits their utility for larger-
scale forecasting in the oil and gas sector. Deep neural
networks, including recurrent neural networks (RNNs) (Huang
et al., 2019) and long short-term memory (LSTM) networks,
retain historical information, making them suitable for time-
series tasks.

RNNs, initially introduced by Rumelhart et al. (1986), have
been widely adopted for time-series prediction owing to their
ability to retain past information. However, RNNs frequently
encounter vanishing or exploding gradients during training.
LSTMs, developed by Hochreiter and Schmidhuber (1997),
address these long-term dependencies on sequential data using
forget, input and output gates to manage information flow.
Despite this advanced design, the effective contextual capacity
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Fig. 1. Schematic of the Transformer architecture.

of LSTM-based language models remains limited to about 200
tokens, making it difficult to capture long-term dependencies
effectively (Wu et al., 2021).

The need to model long-term dependencies is especially
critical for large-scale datasets like those of oil well produc-
tion, which exhibit both short-term and long-term repetitive
patterns. As a novel deep neural network, the Transformer
architecture (Vaswani et al., 2017) employs attention mech-
anisms to process sequential data and access any part of
the historical data, making it suitable for capturing repetitive
patterns with long-term dependencies. Although there has
been an ongoing debate about the efficacy of Transformers
in time series prediction (Zeng et al., 2023), the Transformer
architecture (hereinafter referred to as Transformer) can indeed
be utilized for time series forecasting (Nie et al., 2023). This
paper introduces a deep neural network based on Transformer
to manage long-term dependencies on time-series data to
forecast production in post-refractured oil wells. The efficacy
of this model is validated using real-world data from the
Junggar Basin, and hyperparameter tuning is tailored to such
data. This study marks the first application of a Transformer-
based time-series model for predicting outputs in refractured
wells, which also draws comparisons with traditional models
like RNNs and LSTMs to highlight its enhanced performance.

This article is organized as follows: Section II provides
a brief overview of the Transformer architecture, with a
particular focus on the encoder module. Section III introduces
the deep learning model proposed in this paper and outlines the
construction of the research dataset. Section IV presents the
fitting and forecasting results using a dataset from the W Block
oil field in the Junggar Basin, covering the period of 1983
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to 2020. This section also compares the fitting and forecast-
ing accuracy of the time-series Transformer with RNNs and
LSTMs. Section V describes a two-step short-term historical
production fitting and prediction experiment conducted on 15
wells. Section VI summarizes the experimental results and
suggests viable future research directions.

2. Transformer architecture
The Transformer is a deep neural network based on the

self-attention mechanism (Vaswani et al., 2017), Its structure
is shown in Fig. 1, where K, V and Q represent key, value
and query, respectively.

The first step in the Transformer architecture is input
embedding, which transforms the input sequence into fixed-
size vectors, converting each word into a vector in high-
dimensional space (Vaswani et al., 2017):

Embedding(x) =WeX+be (1)
where We represents the embedding matrix, X is the input
matrix and be denotes the bias term.

Since the Transformer lacks the sequential awareness of
RNNs, position encoding is used to provide information about
word position in the sequence (Wang et al., 2022):

PE(pos,2i) = sin
pos

10000
2i

dmodel

(2)

PE(pos,2i+1) = cos
pos

10000
2i

dmodel

(3)

where PE ∈ R represents positional encoding information, pos
represents the position of an element within the sequence;
i indicates the index of the dimension; dmodel denotes the
dimensionality of the model.

The self-attention mechanism enables words in an input
sequence to communicate and compute their relationships.
For an input sequence x = (x1,x2, · · · ,xi), each element xi
is transformed into Q, K and V using three sets of weight
matrices:

Q=XWQ (4)

K =XW K (5)

V =XWV (6)
where Q represents the query (or attention) of the current
word (or position) towards other positions in the sequence; K
represents each position in the sequence and is used to match
with the query; V represents the content of each position in the
sequence, where the corresponding value is used to compute
the output once a key at a given position matches with a query.
WQ, W K and WV are learnable weight matrices.

Next, the dot product between the query and all keys is
calculated to obtain the attention score matrix:

Attention =
QKT
√

dk
(7)

where dk represents the scaling factor, which is equal to the
dimension of K.

The attention scores for each row are normalized using the
softmax function, which ensures that each element is a positive
value and that the sum of these elements equals 1:

Attention(Q,K,V ) = Softmax(A)V = Softmax
(
QKT
√

dk

)
V

(8)
The self-attention mechanism surpasses RNNs by pro-

cessing all positions in the sequence simultaneously through
parallel computation, capturing long-distance dependencies
and analyzing the attention weights to reveal which parts of the
sequence the model prioritizes, thus enhancing interpretability.

In the attention layer of the Transformer, there are multiple
attention heads. For each head i, distinct weight matrices WQ

i ,
W K

i and WV
i are used. Each head computes the attention

scores and outputs independently:

Qi =QWQ
i (9)
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Ki =KW K
i (10)

Vi = V WV
i (11)

Attention(Q,K,V ) = Softmax
(
QiK

T
i√

dk

)
Vi (12)

Subsequently, the attention outputs from all heads are
concatenated and mapped back to the original dimension via
another linear transformation:

MultiHead(Q,K,V ) = Contact(head1, · · · ,headn)W
O (13)

where headi = Attentioni(Q,K,V ); WO represents the out-
put weight matrix.

The multi-head attention mechanism (Fig. 2) enhances the
capacity of the model by increasing its depth or complexity.
Different heads can learn various aspects of the data, such
as structure and relationships between key factors. By dis-
tributing the attention across heads, the Transformer captures
diverse relationships in different subspaces, leading to a more
nuanced and comprehensive understanding, which is crucial
for complex sequence processing tasks.

Each attention layer is followed by a Feed-Forward Net-
work (FFN), applied identically to each position. The FNN
consists of two linear transformations with a ReLU activation
function between them:

FFN(x) = max(0,xW1 +b1)W2 +b2 (14)
where W1 represents the weight matrix of the first layer, W2
denotes the weight matrix of the second layer, b1 is the bias
vector of the first layer and b2 indicates the bias vector of the
second layer.

Each sub-layer (attention layer and feed-forward network)
includes a residual connection followed by layer normaliza-
tion. This allows information to bypass the sub-layer and
be directly added to its output, ensuring information flow to
subsequent layers:

Output = Sublayer(x)+x (15)
Layer normalization targets each sample independently to

improve training stability and accelerate convergence. It ac-
complishes normalization by computing the mean and variance
of all features for each sample:

µ =
1
H

H

∑
i=1

xi (16)

σ
2 =

1
H

H

∑
i=1

(xi −µ)2 (17)

LayerNorm(x) = γ

(
x−µ√
σ2 − ε

)
+β (18)

where x represents the input to the layer; H represents the
number of features, and γ and β are learnable parameters
used for rescaling and shifting, respectively. These parameters
allow the network to learn to restore the original distribution
that may be more useful for a specific task.

The output of each sub-layer is added to the input via

residual connection, followed by layer normalization:

Output = LayerNorm(Sublayer(x)+x) (19)
Combining residual connections and layer normalization

maintains information flow, prevents the vanishing gradi-
ent problem, accelerates training, and enhances performance.
These techniques enable the Transformer to effectively train
deep networks and capture complex sequential relationships.

Finally, the decoder output passes through a linear layer
followed by a softmax layer to produce the final output
sequence:

Output = Softmax(Wox+bo) (20)
where Wo and bo denote parameters of the linear layer.

3. Methodology

3.1 Problem definition
This paper assumes that there is a collection of N interre-

lated univariate time series {zi,1:t0}N
i=1, where zi,t ∈ R is the

value of time series i at time t and zi,1:t0 =
⌊
zi,1,zi,2, · · · ,zi,t0

⌋
.

Let {Xi,1:t0+τ}N
i=1 denote a set of time-dependent covariates

of dimension d that are known throughout the entire time
period (e.g., specific days of the year or particular hours of the
day). To predict the time series {zi,t0+1:t0+τ}N

i=1 over τ time
steps, the model described in Eq. (21) is executed to estimate
the distribution of zt , given Yt (Eq. (22)):

zt |Yt ∼ D( f (Yt ;θ)) (21)
where D represents a distribution parameterized by the func-
tion f and parameter θ , and Yt represents the known infor-
mation at time t:

p
(
zi,t0+1:t0+τ |zi,i:t0 ,Xi,1:t0+τ ;Φ

)
=

t0+τ

∏
t=t0+1

p(zi,t |zi,1:t−1,xi,1:t ;Φ)

(22)
where zi denotes the value of time series i at time t, Φ

represents the set of learnable parameters that are common
across all time series within the dataset.

Next, let y = φ(x), where φ(·) is an embedding function
from R to Rd , and let φ(x) represent the encoding of x in the
d-dimensional space. The value d is referred to as the model
dimension, typically set to 512 or 1,024; in this study, d is set
to 64.

3.2 Deep neural network architecture
The deep neural network architecture used in this study is

based on the Transformer encoder and is illustrated in Fig.
3. This architecture includes an embedding and positional
encoding module for transforming raw data, a multi-head
attention layer, and a point-wise feed-forward network layer.
Between and after these layers, this paper applies dropout,
residual connections and layer normalization, then a fully
connected layer outputs the prediction results.

In Fig. 3, “×N” indicates that operations are repeated N
times. In this study, N is set to 6 because the computation
converges after 6 iterations.
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Fig. 4. Illustration of the sliding window technique.

In each prediction, the previous T = 7 observation points
are utilized to forecast the production at the next observation
point. The sliding window method is employed to construct
features and labels from the observed time series, as illustrated
in Fig. 4. During this process, the T data points highlighted
in yellow serve as the input features for the model, while the
subsequent data highlighted in green are designated as the
output labels.

3.3 Dataset construction
The study area in this work is Block W, located on the

downthrown side of the Ke-Wu Fault in the northwestern
margin of the Junggar Basin. The reservoirs in this region

are primarily distributed in the Lower Karamay Formation of
the Middle Triassic.

In 2017, these reservoirs entered a secondary development
stage. The entire area contains 191 oil and water wells, with
134 oil production wells, 111 of which are active, and 57
water injection wells, 29 of which are active. The daily oil
production rate across the entire area is 171.4 tons per day,
with a monthly oil production of 4,587 tons and a monthly
water production of 8,181 cubic meters. The oil production
rate is 0.49% and the liquid production rate is 1.38%. The
cumulative oil production is 897,000 tons, with a recovery
factor of only 8.06%. To improve crude oil recovery in this
area, there is an urgent need to employ techniques such as the
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re-fracturing of old wells.
Taking the production data from well J001 in Block W

from July 1983 to April 2020 as an example, the time-series
production data are transformed into multiple subsequences
of length l, denoted as [x]i = (xi,xi+1, · · · ,xi+l−1). Using [x]i,
various types of sequence datasets can be constructed to eff-
ectively train the model.

1) A single non-overlapping sequence dataset [x]i to predict
xl+1, [x]l+1 to predict [x]2l+1, and so on.

2) A single overlapping sequence dataset [x]1, [x]2,
·, [x]m−l , with corresponding values used to predict
xl+1,xl+2, · · · ,xm.

3) l non-overlapping sequence datasets D1,D2, · · · ,Dl , al-
lowing the model to be trained on each dataset separately
and then using an ensemble method.

From the above, method 2) is employed in
this study, and the sequence dataset is divided
into training sets {[x]1, [x]2, · · · , [x]m1} with predic-
tion targets {xl+1,xl+2, , · · · ,xl+m1} and testing sets
{[x]m1+1, [x]m1+2, · · · , [x]m−l ,} with prediction targets
{xl+m1+1,xl+m1+2, · · · ,xm}.

3.4 Evaluation metrics of the model
Evaluating a time-series model is typically based on a

function comparing the predicted and actual values, much
like all supervised machine learning problems. The commonly
employed metrics include Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute Error
(MAE), as shown:

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (23)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)2 (24)

MAE =
1
m

m

∑
i=1

|yi − ŷi| (25)

where yi means accurate value, and ŷi is predicted value.

4. Long-term historical production fitting and
prediction experiment

Production in well J001, located in Block W, was initiated
in July 1983 and operations there were concluded in April
2020, amounting to an operational duration of 36 years and
10 months. The monthly production data collected over the
period covered 442 months. Using the monthly production
data from well J001 from July 1983 to December 2012 as
the training set and the production data from December 2012
to April 2020 as the testing set, the training set contains 354
months of production observations, and the test set contains
88 months of production observations.

4.1 Preliminary training of the model
The model parameters used in this study are shown in Table

1. The sequence length l = 7 , which represents a step length
of 7 days. The initial learning rate of the model is set to 0.01.

Eighty percent of the time-series data is allocated for
training and twenty percent for testing, with the training
extending over 5,000 epochs. The training loss curve before
fine-tuning is shown in Fig. 5(a), and the production forecast
results before fine-tuning are shown in Fig. 5(b).

The model accuracy and training loss of the base model
after 500, 1,000 and 5,000 training epochs are shown in Table
2, where the number of observations for each experiment is
354.

It is observed that the training loss of the model does not
converge within 1,000 epochs and there are instances where
the loss increases instead of decreasing, with the loss curve
showing oscillations. After 5,000 epochs of training, the loss
begins to converge but at a very slow rate, indicating poor
training performance. Therefore, it is necessary to optimize
the model parameters to achieve optimal performance.

4.2 Fine-tuning
During training, machine learning models may experience

stagnant or increasing training loss after several iterations,
indicating slow or stalled convergence and potential over-
fitting. The key reasons for this phenomenon may include
learning rate issues, excessive model complexity and improper
parameter initialization.

Importantly, the learning rate determines the step size of
weight updates. A high learning rate can cause overshooting,
while a low one leads to slow convergence. Meanwhile,
excessive model complexity can cause overfitting, where the
model fits the training data perfectly but performs poorly
on unseen data. Proper parameter initialization is crucial
for convergence, whereas improper initialization can trap the
model in local optima, hindering the gradient from reaching
the global optimum.

Considering that the classic Transformer architecture is
designed for natural language processing, which typically
requires high model complexity (e.g., model dimension of
512, 6 encoder/decoder layers, and 8 attention heads), these
settings may not suit time series processing, especially for
small sample sizes. Therefore, adjusting the model parameters
is necessary for optimizing a time-series Transformer model.
The model dimensions are set to 64, 32, 16 and 8, the number
of encoder layers are set to to 6 and 3, the attention heads are
set to 8 and 4, and the epoch count is fixed at 500 for training.
The loss curves of the model under different parameters are
shown in Fig. 6.

The sensitivity of the model to different parameters is listed
in Table 3. In Table 3, each set of parameter configurations is
set to 500 epochs. In the first column of Table 3, the first
number represents the dimension of model parameters, the
second number represents the number of encoder layers, and
the third number represents the number of attention heads.
Based on Fig. 6 and Table 3, it is evident that the complexity
of the model significantly affects its training performance.
High complexity leads to oscillations in the loss curve and
makes it difficult to converge, whereas low complexity, such
as a model dimension of 8, 6 encoder layers, and 4 attention
heads, results in a loss curve that does not converge at all. The
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Fig. 5. Preliminary results of Well J001: (a) Training loss curve before fine-tuning, (b) production forecast results before
fine-tuning, (c) training loss curve after fine-tuning and (d) production forecast results after fine-tuning.
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Table 1. Model parameters and specifications of this study.

Parameter Encoder examples for natural language processing Encoder examples for time series forecasting

Sequence length l ∼ 1,024 l = 7

Embedding dimension d = 512 d = 64

Positional encoding method sin and cos sin and cos

Number of attention heads h = 8 h = 8

Attention head size dk = d/Nh = 64 dk = 8

Number of block iterations N = 6 N = 6

Number of units in feed-forward network d f f = 4d = 2,048 d = 768

Table 2. Model accuracy comparison before and after fine-tuning.

Impact of fine-tuning Epochs MSE RMSE MAE R2 Loss

Before

500 5,508.3298 74.2181 55.8359 -0.0007 5,506.6142

1,000 5508.4406 74.2188 55.8446 -0.0007 5499.4531

5,000 724.7259 26.9207 13.5847 0.9090 735.2403

After

500 346.2329 18.6073 8.9990 0.9370 442.924

1,000 154.1741 12.4166 7.3381 0.9719 362.6547

5,000 27.5885 5.2524 4.2393 0.9949 83.4593

Table 3. Sensitivity analysis results for different parameter configurations.

Configuration MSE RMSE MAE R2 Loss

64-6-8 5229.0928 72.3124 51.2264 0.0499 5307.1548

64-3-8 175.6045 13.2515 9.0640 0.9680 207.0067

32-6-8 5450.7927 73.8294 54.9118 0.0097 5441.74023

32-3-8 296.0290 17.2054 7.8183 0.9462 392.788

16-6-4 3143.3805 56.0658 34.4843 0.4289 3256.1179

16-3-4 403.7547 20.0936 8.2472 0.9266 550.7932

8-6-4 5513.3452 74.2519 56.1605 -0.0016 5497.7207

8-3-4 623.4303 24.9685 11.067 0.8867 816.0358

number of encoder layers has the most direct impact on the
training results; reducing this number can most visibly improve
training performance. While higher model dimensions can
increase the convergence speed, this also raises the likelihood
of greater training loss. When considering the experimental
results comprehensively, the optimal model parameters are
determined to be a model dimension of 16, 3 encoder layers,
and 4 attention heads. This configuration is designated as
Time-Series Transformer for Refracturing (TST-Refrac).

Based on the new optimal model parameters, the monthly
oil production data for well J001 in Block W is retrained for
5,000 epochs. The loss curve of the optimal model training is
shown in Fig. 5(c), and the production prediction results are
illustrated in Fig. 5(d). The accuracy analysis of the fine-tuned
model is presented in Table 2.

4.3 Comparison of accuracy with RNN and
LSTM

The RNN and LSTM models with similar parameters are
also constructed for comparative validation. The number of
model layers (RNN layers, LSTM layers) is set to 3, the batch
size is set to 20, and the sequence length is set to 7. After 5,000
epochs of training, the comparison results shown in Fig. 7 are
obtained.

The accuracies of different models are detailed in Table
4. It can be observed that, under similar model parameters,
the Transformer exhibits superior performance compared to
traditional time-series forecasting network models. The main
advantage of the Transformer-based model lies in its ability
to capture long-range dependencies without the need for
recursion or convolution, as is the case in traditional sequence
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Table 4. Accuracy comparison of different predictive models.

Experiment Model MSE RMSE MAE R2

Preliminary experiment
on well J001

Transformer 27.5885 5.2524 4.2393 0.9949

RNN 751.5615 27.4146 12.3361 0.8634

LSTM 436.4481 20.8913 10.4695 0.9207

Further validation
on 9 wells

Transformer 0.2002 0.4475 0.2846 0.9481

RNN 1.2219 1.1053 0.8324 0.7938

LSTM 0.7756 0.8806 0.5356 0.8504
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Fig. 7. Prediction comparison for Well J001 using different models.

models. This model introduces a self-attention mechanism,
allowing it to simultaneously consider all positions in the input
sequence rather than processing each position sequentially,
resulting in higher efficiency in handling the data.

5. Short-term historical production fitting and
prediction experiment

Using the production dataset from an oilfield in Block W
of the Junggar Basin, nine wells are randomly selected for
fitting and prediction. Taking the most recent one-year produc-
tion data with daily time steps, short-term production fitting
and prediction are performed. Due to varying frequencies of
well interventions such as well washes, pump shutdowns and
maintenance closures throughout the year, the actual volume
of production data varies. The number of data points collected
ranges from 200 to 300. The selected wells include J002, J003,

J004, J005, J006, J007, J008, J009, and J010. The fitting and
prediction results for these nine wells are presented in Fig. 8,
and the error validation results for the nine wells are shown
in Fig. 9.

The R2 values representing the fitting accuracy of RNN,
LSTM, and the time-series Transformer for the nine wells are
summarized in Table 4. It can be seen that the average RMSE
is 1.1053 for RNN, 0.8806 for LSTM, while the average
RMSE for the production prediction model based on the time-
series Transformer is only 0.4475. The average R2 for 0.7938
for RNN, 0.8504 for LSTM, and it reaches 0.9481 for the
time-series Transformer-based production prediction model.
These data demonstrate that the proposed method has stronger
generalization ability compared to RNN and LSTM.
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5.1 Experiment on the measured production
data of newly refractured wells

Between June and July 2023, six wells in Block W of
an oilfield in the Junggar Basin underwent re-fracturing. The
construction dates of these wells were not entirely consistent,
and additional operational variances such as pump shutdowns
and maintenance closures were present. Consequently, the
volume of actual production data varies, with the number
of collected data points ranging from 200 to 300. The six
wells are numbered as 5D001, 5D002, 5D003, 5D004, 5D005,
5D006. The fitting and prediction results for each well are
shown in Fig. 10(a), and the error validation for each well is
shown in Fig. 10(b).

Subsequently, the cumulative production predicted by the
time-series Transformer is calculated and compared with the
actual cumulative production at the time points of 90 days and
180 days. The prediction performance of TST-Refrac for the
six wells is shown in Table 5. As shown in the table, the TST-
Refrac achieved a prediction accuracy of 95.61% for 90 days
post-fracturing and 96.86% for 180 days post-fracturing. The
errors for both key indicators are less than 5%, hence they

meet the accuracy standards required for large-scale industrial
application.

6. Conclusions and future directions

6.1 Conclusions
1) This paper introduces and scrutinizes the efficacy of a

novel Transformer-based model, TST-Refrac, designed
specifically to predict the production of refractured oil
wells over an extensive timeframe of up to 36 years.
Rigorous evaluations across a suite of wells in the Junggar
Basin affirm the superior predictive power of TST-Refrac
and its robustness in capturing long-term dependencies.

2) The coefficient of determination (R2) of TST-Refrac is
close to 1, which validates the utility of the model in
improving decision-making for oil well refracturing. This
is crucial for optimizing yields, particularly for gravel
sandstone reservoirs.

3) Integrating the proposed model into operational frame-
works can transform predictive insights into actionable
strategies, enhancing the resource efficiency and eco-
nomic viability. Furthermore, exploring the adaptability
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Table 5. Model performance on six newly refractured wells.

No.
Production after 90 days Production after 180 days

Predicted Actual Accuracy Predicted Actual Accuracy

5D001 65.56 70.89 0.9248 191.19 194.46 0.9831

5D002 272.11 267.08 0.9811 531.68 526.4 0.9899

5D003 168.76 180.05 0.9372 254.4 276.92 0.9186

5D004 182.49 185.78 0.9822 364.58 369.03 0.9879

5D005 149.51 161.39 0.9263 386.33 400.31 0.9650

5D006 353.81 359.09 0.9852 461.42 476.96 0.9674

of the model to diverse geological datasets and real-
time predictive applications could set new forecasting
standards in the oil and gas industry.

6.2 Future directions
1) While the original Transformer architecture omits con-

volutional layers, incorporating them can be beneficial,
particularly for time-series data. Many Transformers en-
hance the performance by adding convolutional layers
or integrating them into the attention mechanisms. The
next step involves experimenting with convolutional self-
attention modules to process large-scale oil and gas data.

2) The original Transformer architecture can be referred
to as post-layer normalization (post-LN), where layer
normalization is located outside the residual block. Post-
LN converges more slowly and requires a learning rate
warm-up strategy. The next step could be to try using
pre-layer normalization (pre-LN) Transformers to accel-
erate convergence without the need for warm-up. Pre-
LN Transformers achieve this by controlling gradient
magnitude and balancing residual dependencies.

3) To enhance the performance of time-series Transformer
models on smaller datasets, better initialization tech-
niques are needed. These techniques can regulate model
updates, eliminate the need for learning rate warm-up
and layer normalization, and facilitate training deeper
Transformer models on small datasets.

4) Hyperparameters such as embedding dimensions and the
number of heads/layers significantly impact the Trans-
former’s performance. However, manually configuring
these is time-consuming and can reduce performance.
For industry-scale time-series data with high dimensions
and long sequences, automated techniques like Neural
Architecture Search are crucial for discovering memory-
efficient and computationally effective Transformer archi-
tectures, marking an important future direction for time-
series Transformers.
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