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Abstract:
Seismic events triggered by stress unloading during geo-energy extraction activities have
become a key focus in both seismological research and engineering safety. This study
presents a novel application of waveform neural networks, combining unsupervised and
supervised learning techniques to classify and characterize fractures in laboratory-induced
seismic events. Initially, A neural network model was initially developed that is capable
of extracting time-frequency features from waveforms through unsupervised training on
1.2 million Acoustic Emission waveforms. Subsequently, this model was fine-tuned using
a labeled dataset obtained from Brazilian split and uniaxial compression tests. The final
result was a highly accurate model, achieving an accuracy rate of 97.6%. By applying this
refined model, insights have been gained into the complex fault slip behaviors induced
by geo-energy extraction activities. Our findings reveal that fluid infiltration at the onset
triggers low-energy, shear-induced fractures in low-stress fault regions, which then escalate
into tensile fractures during critical sliding in high-stress areas. Key precursors to fluid-
induced seismicity have been identified, providing a major advance in early seismic
hazard detection. These insights are essential for monitoring and early warning of induced
seismicity during geo-energy extraction activities. Our work contributes significantly to
improving the safety and efficiency of geo-energy extraction, including geothermal, shale
gas, and conventional hydrocarbon production.

1. Introduction
Activities such as unconventional hydrocarbon extraction,

geothermal energy production, and reservoir filling have been
associated with minor to moderate seismic events (Elsworth
et al., 2016; Grigoli et al., 2018; Kim et al., 2018; Zhuang
et al., 2019; Lengliné et al., 2023), with some instances
exceeding a magnitude of Mw 4.0 (Ellsworth, 2013; Kera-
nen et al., 2014). These human-induced seismic events pose
risks to infrastructure, safety, and industrial operations (Zöller
and Hainzl, 2023). Consequently, comprehensive monitoring

systems and stringent regulations are essential to anticipate,
manage, and mitigate the seismic hazards associated with
geo-energy extraction activities (Zoback and Gorelick, 2012;
McGarr et al., 2015).

Currently, scholars widely focus on induced seismicity
primarily caused by fault slip due to fluid intrusion during
energy extraction. In open-pit mining, as well as natural
oil and gas extraction, changes in in-situ stress within and
around reservoirs can lead to fault stress unloading, which
disrupts fault stress balances and triggers seismic activity
(Wu, 2021). For instance, seismicity related to stress unloading
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is frequently observed in open-pit mining contexts (Lynch and
Malovichko, 2006). Emanov et al. (2014) investigated induced
seismicity at open-pit mines in Kuzbass, highlighting the
significant seismic event known as the Bachatsky earthquake
on June 18, 2013, which underscores the impact of mining
activities on seismicity in the region. Similarly, at the Lacq
gas field in France, more than 2,000 seismic events with mag-
nitudes less than 4.2, attributed to natural gas extraction, were
recorded between 1974 and 1997 (Bardainne et al., 2008).
These unloading-induced earthquakes often involve subsurface
fluid interactions. However, the role of groundwater and stress
unloading in these events still requires further exploration.
Qian et al. (2019) observed a shallow Mw 4.1 earthquake in
the historically low seismic Sichuan Basin, China. This study
emphasized that construction activities may have induced up
to 0.11 MPa of Coulomb stress unloading and facilitated
fluid ingress into faults, leading to fluid-induced seismicity
under unloading conditions. However, the fluid-solid coupling
processes within the fault during unloading-induced seismicity
have received relatively little attention. Seismicity may arise
as unloading processes create pathways for fluids to penetrate
faults, initiating seismic events. The coupled fluid-mechanical
unloading process is highly complex (Cai et al., 2024). While
stress unloading reduces the load on the fractured rock masses,
decreasing the risk of rock instability, the unloading and stress
redistribution caused by fluid injection lead to crack propaga-
tion and coalescence, enhancing permeability and increasing
the risk of fault instability. These mechanisms interact, com-
plicating the assessment of fault stability during unloading
processes. Conversely, stress unloading may also trigger fault
instability. This complexity poses significant challenges in
assessing the stability of excavations involving the coupled
hydro-mechanical unloading process in geo-energy extraction
(Zhou et al., 2021). Therefore, a comprehensive understanding
of the mechanical deformation and permeability evolution in
faults under coupled hydro-mechanical unloading conditions
is crucial. This understanding is essential for interpreting and
predicting induced seismicity.

To quantitatively investigate the fluid-solid coupling pro-
cess within faults, accurately detecting fluid distribution within
the fault zone is essential. Scholars have utilized numerical
simulations (Wang et al., 2021a), such as the Discrete Element
Method (Kou et al., 2019; Song et al., 2019; Zhang et
al., 2020) and Peridynamics (Wang et al., 2016; Wang et
al., 2019; Bazazzadeh et al., 2020; Zhou and Wang, 2021), to
study fluid-solid coupling and hydro-mechanical behavior in
rocks. However, these methods often rely on assumptions that
may limit their accuracy in simulating real-world processes.
Acoustic Emission (AE), characterized by its high temporal
resolution and relatively high spatial resolution, has emerged
as an effective tool for analyzing fluid-solid interaction dy-
namics (Zhan et al., 2019; Wang et al., 2021b). Kwiatek
et al. (2014) conducted moment tensor analysis on stick-
slip events in Westerly granite, revealing that faults exhib-
ited distinct double-couple components under varying sliding
conditions. The rise time/amplitude-average frequency (RA-
AF) method, which utilizes waveform parameter information,
has been extensively applied to classify the types of fractures

(Aggelis, 2011). Cheng et al. (2022) conducted AE labora-
tory experiments to simulate induced seismic activity. Their
findings indicate that high injection flow rates and elevated
confining pressures increase the maximum magnitude of in-
duced seismic events, thus heightening the associated seismic
risks. Wang et al. (2024) utilized high-resolution AE records
to perform full moment tensor inversion on all located AE
sources, investigating the changes in AE characteristics related
to induced fault slip and their relationship to fault roughness.
While these studies have employed AE for qualitative research,
they have yet to fully explore the rich information contained
in AE waveforms. The sequential characteristics of AE wave-
forms hold critical data about tensile and shear fractures
during fault slip. Employing neural networks to analyze this
tensile-shear fracture data could provide valuable insights into
the dynamics of fluid-solid coupled fracturing processes. In
recent years, artificial intelligence has taken center stage in
research and development across diverse domains, including
impressive strides within the field of geological science (Jia et
al., 2024). Yang et al. (2024) developed a multi-scale residual
neural network that incorporates prior knowledge to predict
dissolution characteristics, effectively identifying key disso-
lution zones and potential formation of significant channels.
However, much of the current research remains rooted in
supervised learning paradigms that require extensive, often
costly, labeled datasets (Huang et al., 2021; Song et al., 2022).
Therefore, this study is primarily focused on developing an
innovative neural network capable of accurately identifying
rock fracture types with minimal labeled data. Building on this
model, this study analyzes the characteristics of tensile-shear
fractures during fault slip in a fluid-solid coupling context,
thereby elucidating its dynamic evolution mechanisms.

In this paper, unsupervised learning technique is used
to develop a model capable of extracting features from
time-frequency representations of waveforms, amassed from
over 1.2 million rock fracturing experimental outputs. Subse-
quently, a small subset of labeled data is employed to fine-
tune this pre-trained model. This approach allows the neural
network to generalize effectively, enabling it to accurately
distinguish tensile from shear-induced fractures. Using this
model, we investigate the complex interplay and trigger rela-
tionships between tensile and shear-induced fractures in the
context of fault slip events. The study provides a detailed
examination of the initial triggering mechanisms associated
with stress unloading during geo-energy extraction activates.

2. Data preparation and neural network
methods

2.1 Data fundamentals preparation
To acquire labeled AE data for fracture induced by tensile

and shear forces, we conducted laboratory experiments on
both artificial and natural rock samples. The artificial samples
included pure concrete (PC), concrete mixed with sand in a
1:1 ratio (CS1:1), and concrete mixed with sand in a 1:2 ratio
(CS2:1). The natural rock samples comprised sandstone (SS),
dolomite (DL), granite (GN) and shale (SH) (see Fig. 1(c)). It
is widely recognized that the Brazilian split test predominantly
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Fig. 1. Stress analysis and time-frequency data for Brazilian splitting and uniaxial compression. (a) Stress Analysis, (b) waves
transformed time-frequency diagrams and (c) seven different materials and their corresponding time-frequency diagrams.

generates fractures under tensile stress, whereas uniaxial com-
pression tests primarily induce fractures due to shear stress (Li
et al., 2011; Chen et al., 2014; Garcia-Fernandez et al., 2018)
(as shown in Fig. 1(a)). Given the intricacy of rock interior
structures, even in regions dominated by shear stress, localized
tensile fractures may still occur. Furthermore, the existence
of microscopic-scale shear fractures remains a subject of
ongoing debate (Petit and Barquins, 1988). Accordingly, in
this study, fracture signal datasets were classified by the
loading modes applied, such as Brazilian split (tensile-induced
fracture) and uniaxial compression (shear-induced fracture),
rather than by fracture types. It is also important to highlight
that underground rock is typically subjected to compressive
stress, which results in shear forces, while tensile stress can
arise locally from block rotations or fluid intrusions. Thus,
focusing on the stress conditions leading to fractures proves
to be of greater practical significance. In this study, we used an
AE probe with a resonance frequency of 300 kHz. The signals
recorded by this probe typically contain critical information
regarding the fracture mechanisms and rupture dynamics. To
ensure accurate acquisition of all relevant details of the fracture
process, we employed a sampling frequency of 1 MHz.

To further analyze the information contained within the AE
waveforms, we applied a wavelet transformation to convert the
waveforms into spectrograms. Time-frequency representations
significantly improve feature extraction efficiency, making fea-
tures that are not apparent in the time domain more prominent
in the frequency or time-frequency domain (Bahmaninezhad et
al., 2019). This allows the model to effectively capture relevant
features without the need for increased complexity or extensive

training data. The utility of time-frequency representations
has been demonstrated across various fields, such as speech
recognition (Arias-Vergara et al., 2021). Experimental results
indicate that using spectrograms is superior to directly pro-
cessing waveforms, as they more accurately reflect the energy
distribution of signals and facilitate the model’s learning of key
features (Bahmaninezhad et al., 2019; Ma et al., 2019). This
is especially important for our study, as the limited amount of
waveform data constrains the training of large models. In this
context, spectrograms allow us to fully extract features using
simpler models with limited data, thereby enhancing both the
model’s performance and its reliability.

The resulting time-frequency diagrams are presented in
Fig. 1(b), where the horizontal axis represents time (spanning
1,024 µs) and the vertical axis represents frequency (0 to
500 kHz). Spectrograms facilitate the observation of distinct
features. For instance, AE signals from rock fractures under
tensile stress primarily exhibit banded patterns, whereas those
under compressive stress display network-like and partially
banded patterns (as shown in Fig. 1(b)). This observation is
consistent with previous studies (Song et al., 2022).

In this experiment, a total of 223,380 labeled AE data
points were collected from Brazilian splitting and uniaxial
compression tests conducted on seven types of rocks. These
data were then transformed into time-frequency spectrograms.
Subsequently, 80% of these spectrograms were randomly
selected to form the training dataset, while the remaining
20% were set aside. These labeled datasets are essential for
fine-tuning the model following unsupervised training. This
approach allows the model to further refine its performance
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Fig. 2. Introduction of unsupervised-finetuning approach.

using the labeled data, thereby enhancing its ability to accu-
rately interpret and classify AE patterns.

2.2 Introduction to neural network training
methods

Compared to convolutional neural network models, the
self-attention mechanism utilized in the Transformer models
exhibits enhanced advantages on a global scale (Vaswani et
al., 2017; He et al., 2022). This global attention mechanism
effectively captures relationships between distant features in
waveform sequences, whereas convolutional neural networks
are more adept at focusing on local interactions between
adjacent sequence features. This enables Transformers to bet-
ter understand and integrate context across entire sequences,
providing a deeper and more comprehensive analysis of com-
plex patterns (Dosovitskiy et al., 2021). Consequently, this
paper employs the Transformer model (including encoder
and decoder) for training and recognition tasks. However,
due to the substantial number of parameters inherent in the
Transformer model, a large volume of labeled AE data is
required to mitigate the risk of overfitting during training. But
collecting a large amount of labeled data always costs time and
effort. To address this challenge, this study adopts a strategy
that combines unsupervised learning with fine-tuning. Initially,
the Transformer model is trained in an unsupervised manner
using a large-scale unlabeled dataset to learn the distribution of
the waveform sample space. This foundational training allows
the model to capture the general features of the data without
labels, learning generalized feature representations that serve
as a solid foundation for downstream tasks. The pretrained
encoder functions as a feature extractor by transforming input
data into representations that encapsulate important informa-
tion. These representations provide a rich and informative
starting point for supervised learning, enhancing the model’s
performance even with limited labeled data. Subsequently,
supervised training is conducted with a small labeled dataset,
utilizing the pre-trained encoder and a classifier. This process
enables the model to effectively map labeled data features onto
the learned sample space distribution, improving its ability to
generalize to new or unseen data. This approach facilitates the
training of large models with limited labeled data, as illustr-
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Fig. 3. Introduction of unsupervised model.

ated in Fig. 2. Accordingly, this paper will first pre-train
the Transformer model using triaxial test data of sandstone
from earlier studies, and then employ the AE waveforms from
Brazilian splitting and crack propagation tests as labeled data
to segregate the features extracted by the model.

3. Unsupervised and supervised models and
training introduction

3.1 Introduction to unsupervised models and
training

After undergoing a time-frequency transformation, the one-
dimensional waveform data is converted into two-dimensional
image representations, which better highlight the sequential
characteristics of AE. To capture the features of these spec-
trograms, this study utilized 1.2 million AE spectrograms
generated from our prior sandstone fracturing experiments
(Huang et al., 2022). These AE events were obtained from
experiments conducted under seven distinct true triaxial stress
states, encompassing various Lode angles (-30◦, -20◦, -10◦,
0◦, 10◦, 20◦, 30◦), representing different states of stress
that may be encountered in underground environments. This
diversity ensures that our model can effectively learn and make
predictions across a broad range of geological conditions.
The Transformer model was trained on this dataset to extract
useful features from the spectrograms. Fig. 3 illustrates the
schematic of the unsupervised training process, which com-
prises modules for embedding, an encoder, and a decoder.
Initially, the images were partitioned into multiple segments;
in this study, each image was divided into 14× 14 sections.
This segmentation was inspired by the Vision Transformer
architecture (Dosovitskiy et al., 2021), where images are split
into fixed-size patches to capture local and global features
effectively. Dividing the 224×224 pixel images into 14×14
patches results in patch sizes of 16×16 pixels, balancing detail
preservation and computational efficiency. These segments
are combined with positional encoding and input into the
encoder component of the Transformer network for feature
extraction. The encoder in this study consists of 24 layers
of attention and linear structures. The 24-layer configuration
was selected to ensure sufficient model capacity for learning
intricate features from the spectrograms while maintaining
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Fig. 4. Time-frequency images generated based on the pretrained model. (a) Input image, (b) reconstructed image and (c)
original image.

computational feasibility. The attention mechanism enables
the model to assign different weights to input data at diverse
positions, thereby concentrating on parts most relevant to
the current context. The subsequent Linear layer transforms
the output from the attention mechanism into a fixed-size
vector, enabling further processing by subsequent layers or
other modules. The combination of Attention and Linear
architectures aims to capture the dependencies between various
positions within the input sequence (Azad et al., 2022; Wang
et al., 2022). Notably, each Attention layer in this model
comprises 16 Attention heads, which are capable of capturing
different aspects or features of the time-frequency diagrams
in parallel. This parallel processing enhances the capacity
of the model to discern more intricate dependencies (Ma et
al., 2019; Reza et al., 2022). After the images are encoded by
the Encoder, they are passed through a simple decoder layer
to reconstruct the original image. The decoder is relatively
lightweight, comprising fewer Transformer layers. These lay-
ers are responsible for reconstructing the masked sections of
the image, and in this study, the decoder typically includes 8
layers each with 8 attention heads. The difference between the
generated and original images serves as an evaluation metric
during model training (the loss function Lre is shown in Eq.
(1)), facilitating improved feature extraction by the model:

Lre =−1
n ∑

p∈P

2µxµy +C1

µ2
x +µ2

y +C1

2σxy +C2

σ2
x +σ2

y +C2
(1)

where n is the number of images in a training batch (i.e., batch
size), P is the image set of this training batch, p an individual
image from that set P, x and y represent the processed and
real images respectively, µ denotes the mean of the image, σ

indicates the variance of the image, σxy denotes the covariance
between images, and C1 and C2 are constants (to maintain
stability and prevent division by zero in the denominator).

To assess the learning effectiveness of the unsupervised
model in extracting time-frequency features, we employed
a missing information restoration approach to evaluate the
Encoder’s ability to extract features from spectrograms. The
model can simultaneously consider information from both the
left and right sides of a patch. This approach facilitates a
comprehensive representation of an image within its context,
enabling the capture of intricate patterns and relationships. The
final model can learn the feature information of all waveform
spectrograms even without labeled data. When applied to
specific downstream tasks, this methodology exhibits com-
mendable performance even with a limited amount of labeled

data (Devlin et al., 2019). This flexibility showcases the
model’s robustness and adaptability, making it highly effective
for practical applications in geosciences where labeled data are
often scarce. In this paper, partial time-frequency information
was provided, and the model was tasked with using prior
knowledge to reconstruct the complete time-frequency data.
The closer the restoration matches the real image, the better the
model’s learning performance. The results of the unsupervised
training are depicted in Fig. 4.

From Fig. 4, it is evident that when the model is pre-
sented with randomly masked images (with 75% of the
image covered), the pretrained model reconstructs the time-
frequency image by utilizing the provided prior information
(the unmasked portion) based on the time-frequency features
learned by the Encoder module. A comparison between the
original and reconstructed images shows that the model can
effectively restore the entire spectrogram. To quantitatively
assess the similarity between the original and reconstructed
images, we used histogram correlation analysis. Histograms
represent the distribution of pixel intensities within an image,
and their comparison provides a metric for assessing the
similarity of intensity distributions between the two images.
The histogram correlation coefficient between the original and
reconstructed images was found to be 0.9880, indicating a
high level of similarity. This result confirms that the pretrained
model effectively captures the underlying patterns of AEs and
can infer missing information from the unmasked portion.

3.2 Classification network training based on
unsupervised encoder

The pretrained encoder module obtained through unsuper-
vised learning is integrated with a two-layer fully connected
network and a Sigmoid activation function to construct the
classification network. In this model, we used a batch size
of 64 and applied the Adam optimizer with a learning rate
of 0.0001, along with a binary cross-entropy loss function.
These parameters were selected to ensure the stability and
effectiveness of the model during training. The network was
trained using labeled data of tensile-induced and shear-induced
fractures from seven types of rocks. The primary objective of
this model is to classify the input AE spectrograms into two
categories: rock fracture due to tensile stress and those caused
by shear stress.

Fig. 5 presents the recognition accuracy and loss variation
of the model throughout the training process. The model was
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Fig. 5. Accuracy and loss variation on the test set during model
training.

trained for 50 epochs. During the initial 15 epochs, the model’s
accuracy increased rapidly, indicating continuous adjustment
of feature weights to improve accuracy. After 30 epochs,
the accuracy on the test dataset stabilized at around 97%
without further improvement. The best-performing training
run, with an accuracy of 97.6%, was selected as the final
model. This model was then used to classify and recognize
fractures generated during true triaxial fracturing experiments.

4. Applications of the model to the study of
induced seismicity mechanisms

4.1 Methods for fault induction experiments
To thoroughly understand the process of fault activation

induced by stress unloading and fluid infusion, this study uses
granite as the research subject, simulating earthquake induc-
tion through depressurization in a laboratory setting. Initially,
triaxial pressures were applied incrementally to 5, 10 and 15
MPa. While maintaining these confining pressures constant,
the water pressure was gradually increased to 3.5 MPa. Once
the water pressure stabilized, the maximum principal stress
was reduced, allowing fluids to permeate the fault thoroughly
and attempting to induce slippage. Throughout the loading
process, AE events during fault slippage were recorded. The
specific distribution of the granite specimens, AE sensors and
spectrograms is illustrated in Fig. 6.

4.2 Fault rupture process analysis
Fig. 7 illustrates the stress-strain response of specimens

at various stages of a pressure relief experiment and the
corresponding distribution of fault ruptures. In Fig. 7(b), the
blue line denotes the changes in displacement along the axis
of minimum principal stress. This displacement decreases
progressively as fluid pressure increases, indicating expansion
in that direction due to the reduction in effective stress by fluid
injection. Concurrently, a decrease in the maximum principal
stress results in a reduction in this expansion, suggesting a
partial elastic rebound. Notably, a rapid expansion in the direc-
tion of minimum principal stress occurs when the maximum
principal stress aligns with the intermediate principal stress,
signaling a swift fault slip and potential earthquake initiation.

This phenomenon can be attributed to the initial constriction of
the fault by the maximum principal stress, which hinders fluid
penetration. However, as the stress decreases, fluid gradually
infiltrates the fault’s locked segment, altering the frictional
properties and triggering unstable slip. To delve deeper into
the fault slip dynamics, this study employs AE monitoring to
analyze the fault activation process, facilitated by depressur-
ization and fluid injection.

Figs. 7(a), 7(d) and 7(e) show the dynamic evolution
of fracture mechanisms within the fault, where the size of
the shapes indicates the energy of AE events, and the color
representing timing. The fault activation process can be cate-
gorized into three distinct phases based on the stress conditions
and fracture distribution. Initially, low-energy AE events are
predominantly detected in the fault’s center with some high-
energy events at the fault edge (Fig. 7(a)). These events are
generated during the initial loading process. During the water
injection phase, AE events spread from the center to the edges,
illustrating the outward expansion of the primary friction
zone within the fault due to water infusion. The third phase,
characterized by induced fault slipping, shows a continuation
of this expansion at the fault edges. At this stage, AE events
have higher energy due to a sudden energy release, and they’re
more focused, creating a narrow pattern rather than the wider
distribution in earlier stages. This phenomenon may be due
to fluid diffusion into the fault locking area under unloading
conditions, altering the stress states and the fault’s physical
properties, thus facilitating slip.

An interesting deviation of AE events is observed in the
fault’s lower section, attributed to rock fracturing during the
preloading phase, which causes a delayed AE signal detection.
Utilizing the time-difference localization algorithm (Li et
al., 2016), these delays lead to a perceived displacement of
the localization point, resulting in a deflection greater than the
actual fracture (Figs. 7(a) and 7(b)). Consequently, a refined
localization algorithm is required to correct this discrepancy.
However, this does not compromise the analysis of the AE
timing features, nor the assessment of fluid dynamics within
the fault. For a more nuanced examination of fluid-induced
fault slipping, the AE localizations have been segmentally
analyzed at different stages.

4.2.1 Loading stage

Fig. 8 presents the spatiotemporal dynamics of fault rupture
throughout the stress loading stage. In this figure, circles
signify fractures induced by tension, while squares denote
fractures caused by shear. In the initial phase of loading,
with fluid pressure at 0.5 MPa, the hydrostatic stress across
the system is relatively low. This facilitates fluid permeation
from the fault’s core to its edge, leading to an array of
fracturing events. High-energy AE events are recorded in the
fault’s locking zone at 257 seconds. As stress escalates, the
locking zone compacts, redirecting fluids towards the central
area. From Fig. 8(a), it can be seen that fractures caused by
tensile stress predominantly occur after 200 seconds, during
the phase of stress loading. While fractures produced in the
early stages of fluid injection are primarily caused by shear.
These fractures, induced by the applied stress, display a rup-
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Fig. 6. Experimental Overview. (a) Experimental equipment and (b) specimen diagram.
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Fig. 7. The internal evolution process of faults and their corresponding loading states. (a) The distribution of fault activity
during the initial loading stage (stage 1), (b) stress, water pressure, and fault adjustment during the induced fracturing process,
(c) the fracture distribution of the granite fault specimen after the experiment, (d) the distribution of fault rupture during the
fluid injection stage (stage 2) and (e) the distribution of fault rupture during the stress unloading-induced sliding stage (stage
3).
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Fig. 8. Spatiotemporal evolution patterns of different fractures during the stress loading phase. (a) Distribution of tensile
induced fractures and (b) distribution of shear induced fractures.

Fig. 9. Evolution law of AE during fluid pressure rise.

ture mechanism that is distinct from those initiated by fluid
penetration. During the phase of stress loading, a significant
number of fractures are caused by tensile forces. Additionally,
we note that at the fault’s turning point, where stress concen-
trates, a series of fractures induced by tension are generated (as
shown in Fig. 8(a)). This phenomenon indicates that areas of
stress concentration are prone to develop fractures triggered by
tension, whereas fractures due to fluid diffusion are typically
caused by shear stress. This pattern also repeatedly appears in
subsequent loading.

4.2.2 Injection stage

After the triaxial stress reached its predetermined threshold
and stabilized, the fluid pressure began to increase gradually.
Consequently, ruptures within the fault initiated at the center
and propagated outwards, casting a rainbow-like distribution
on the Y-Z plane (Fig. 9). Initially, as the fluid pressure rose,
the ruptures predominated near the fault’s central axis. With
continued increase in fluid pressure, the ruptures gradually
extended towards the edge of the fault. During the third
increase in fluid pressure, the ruptures continued to propagate
towards the edge of the fault; however, the diffusion rate of
the fluid decreased, indicating the presence of a high-stress
zone within the fault that can resist further fluid penetration. A
noteworthy observation from Fig. 9 is that ruptures caused by
tensile stress are predominantly concentrated in the high-stress

regions at fault bends, with other areas experiencing fewer
tensile-induced ruptures. The fluid-induced ruptures exhibit a
rainbow-like distribution primarily resulting from shear stress.
This pattern is similar to the AE phenomena observed in
stage 1 before stress loading, where ruptures induced by fluids
are exclusively shear-caused, while those due to tensile stress
typically result from increased stress levels. Given that the
stress conditions were constant during this phase, it becomes
evident that the ruptures were exclusively induced by fluid
permeation. Evidently, the fractures caused by fluid intrusion
contrast markedly from those under standard rock loading con-
ditions. This unique pattern could serve as a crucial framework
for elucidating fluid-induced fault sliding and provide essential
insights for earthquake prediction systems.

4.2.3 Unloading and induced sliding stage

After the third fluid injection, we maintained a constant
fluid pressure while simultaneously decreasing the maximum
principal stress to induce fault sliding. The unloading phase,
as shown in Fig. 10, resulted in the fault generating a series
of high-energy ruptures that propagated along the edge of the
previously formed rupture zone. Notably, a few tensile ruptures
were observed throughout this process, mainly in the lower
half of the fault. This pattern suggests that during unloading,
some stress-induced ruptures occurred, with shear ruptures
dominating in the upper part of the fault, showing that these
were mostly due to fluid entering the fault. The data show
that reducing stress helped open pathways for fluids, allowing
them to penetrate the fault’s locked area. This movement
reduced the shear strength in the region, ultimately leading to
seismic events. During the sliding stage, more tensile fractures
appeared in the upper part of the fault, indicating that high
stress from fault movement can also cause ruptures.

Through our analysis, we have elucidated the flow dynam-
ics of fault fluids influenced by the combined actions of the
stress and seepage fields. An increase in fluid pressure initially
channels the flow longitudinally along the fault traces, which
is subsequently impeded by transverse barriers. This process
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Fig. 10. Spatiotemporal evolution of AEs during fluid induced sliding process. (a) Unloading stage and (b) sliding stage.
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Fig. 11. Schematic diagram of fluid diffusion under the
influence of fault scratches.

is similar to previous studies, where Hui et al. (2021) identified
fault structures comprising an impermeable core and high-
permeability damage zones. Specifically, in the fault zone
architecture section, the study describes a typical fault zone
containing a low-permeability fault core surrounded by highly
fractured, high-permeability damage zones. These characteris-
tics are crucial for understanding fluid flow dynamics during
hydraulic fracturing and fault reactivation. The damage zones
act as hydraulic conduits for pressure diffusion along faults,
while the fault core serves as an impermeable barrier prevent-
ing cross-fault flow.

During the unloading stage, rapid fluid diffusion overcomes
the barriers of the fault trace, leading to fault sliding (Fig.
11). This observation aligns with prior research by Anderson
and Bakker, which investigated the role of faults in directing
and obstructing fluid movement (Anderson and Bakker, 2008).
Our findings reveal the fundamental mechanisms driving earth-
quakes induced during unloading. Specifically, our analysis
indicates that such earthquakes are triggered by the infiltration
and lubrication of the fault by fluids, rather than solely by
a reduction in effective stress due to fluid entry. To avoid
induced seismicity, it is essential to maintain the integrity of
the fault blocking zone. The onset of earthquakes is due to
the weakening of shear strength across the fault caused by
fluid intrusion, which can be initiated by either heightened
fluid pressure or by unloading processes that facilitate fluid
entry. This mechanism may also account for delayed induced
seismicity, where seismic activity occurs after the cessation of
fluid injection due to the ongoing fluid diffusion within the
fault, eventually leading to fault slip and earthquakes after a
certain period.

4.3 Discussion on induced earthquake early
warning based on fracture distribution

To further analyze the relationship between the stress
states and the proportion of tensile-induced fractures on the
fault surface, and based on this, to propose parameters for
earthquake early warning, we divided the fault on the Z-Y
plane into 15 regions. The fault was segmented according to
the rupture sequence from the center to the edges into five
areas, and vertically from top to bottom into three sections,
resulting in a total of fifteen distinct regions, as illustrated in
Fig. 12(a). To more precisely assess the stress distribution and
fracture conditions in each region, we calculated and averaged
the improved b-value (ib values) (Grosse et al., 2021) from AE
events for each area. The formula for calculating ib values is
as follows:

ib =
log10 N(w1)− log10 N(w2)

(α1 +α2)σ
(2)

where N(w1) and N(w2) denote the amount of amplitude
exceeding µ − α1σ and µ + α2σ , respectively; α1 and α2
are taken as 0 and 1 (Shiotani et al., 2001; Colombo et
al., 2003; Watanabe et al., 2007). We test this method with
the experimental data in this paper.

According to previous research, lower ib values indicate a
concentration of stress in those regions, whereas high ib values
suggest a low stress state. Additionally, we have quantified
the proportion of tensile-induced fractures relative to the total
fractures in each area. In Figs. 12(b) and 12(c), the distribution
of ib values and the proportion of tensile-induced fractures at
different locations on the fault are displayed. It is observed
that the ib values decrease from the center to the edge of the
fault, while the distribution of tensile-induced fractures shows
the opposite trend, being lower in the central region and higher
towards the edges. This distribution pattern reveals the stress
changes caused by fluid invasion, where the fluid spreads from
the center to the edges of the fault and encounters high-stress
areas that impede further expansion. Figs. 12(d) and 12(e)
further analyze the distribution of ib values and the proportion
of tensile-induced fractures before and after unloading. The
results show that unloading leads to a significant increase
in ib values and a notable reduction in the proportion of
tensile induced fractures at the fault edges. This phenomenon
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Fig. 12. Temporal and spatial distribution map of ib values and tensile-induced fractures on the fault plane. (a) Regional
division based on fluid diffusion processes along the fault plane, (b) distribution of ib values in different regions, (c) proportion
of tensile-induced fractures in different regions, (d) changes in ib values on the fault plane before and after unloading and (e)
changes in the proportion of tensile-induced fractures on the fault plane before and after unloading.

is very similar to the findings in other studies (Lei, 2024). This
indicates that the stress is released during the depressurization
process, allowing further fluid penetration and inducing fault
sliding.

Additionally, an increase in loading stress in these areas
usually corresponds with an increase in the proportion of
tensile-induced fractures. For example, in Fig. 9, the stress-
concentrated areas at the fault’s turn exhibit a large number
of tensile-induced fractures. This suggests that tensile fractures
primarily occur in areas of stress concentration, indicating that
these areas may be more prone to ruptures and potentially
unstable slips. In contrast, during the stage of fault stable slip
induced by fluid, the observed fractures are predominantly
caused by shear, which differs significantly from the mech-
anism of tensile-induced fracture formation.

Fluid invasion into low-stress areas of a fault typically
leads to shear-induced fractures, accompanied by slow fault
slip, during which the ib values are significantly higher. Low-
pressure areas do not exhibit fault locking. In these regions,
fluid injection decreases the fault’s shear strength, leading to
ruptures that often manifest as shear slippage along the fault
plane with minimal new rock fracturing, which is the primary
source of tensile-induced fractures. This results in slow fault
slip, Which generally does not produce strong vibrations and
thus has a lesser impact on the surface. However, over time,
this slow slip may cause fault creep deformation, potentially
affecting the fault’s stability and necessitating prolonged mon-
itoring to evaluate its impact. In contrast, when fluids infiltrate
the high-stress boundaries of the fault, the resulting ib values

from fluid invasion are very low due to the high stress in
this area, along with a significant increase in tensile-induced
fractures. In high-pressure regions, the fault is locked, meaning
that new fractures need to be generated during rupture, leading
to a substantial number of tensile fractures. Once these locked,
high-stress areas fail, rapid fault slip occurs, which may trigger
earthquakes. This rapid slip and the associated seismic activity
pose significant risks to nearby environment and infrastructure.

When fluid enters a low stress region, the ib value is
high, and the proportion of tensile-induced fractures is rel-
atively low. As the ib value increases and the proportion of
tensile induced fractures rises, it indicates that the fluid has
entered a high-stress area, often corresponding to the fault
core (Hui et al., 2021). This suggests an elevated risk of
seismic events, necessitating continuous monitoring of the ib
value and the proportion of tensile-induced fractures. When
the ib value begins to increase while the proportion of tensile-
induced fractures decreases, it insinuates that the fault in
this region is becoming unstable and may be approaching
failure. Simultaneous consideration of these two parameters
can provide a more reliable early warning for fault slip.
In this experiment, the average ib value increased by 66%,
while the proportion of stretch-induced fractures decreased by
22% before and after fault depressurization. For other regions,
specific early warning indicators need to be determined based
on local conditions. These findings underscore the importance
of continuous monitoring of stress parameters and fracture
types for more accurate seismic risk assessment. Such insights
provide valuable geological and mechanical data that can
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improve the effectiveness of seismic activity monitoring and
early warning systems, especially in the context of energy
extraction-induced seismicity.

5. Conclusions
An advanced neural network model that employs unsuper-

vised learning coupled with fine-tuning strategies have been
engineered. Requiring only a small labeled dataset, this model
excels in its precision, achieving an accuracy rate of 97.6%
in distinguishing between rock fractures caused by tensile and
shear forces.

In low-stress areas of a fault, the intrusion of fluids can
trigger fault rupture through shearing and allow it to spread
outward. This spreading process is obstructed upon encounter-
ing high-stress regions, where stress unloading in these high
stress areas further promotes fluid diffusion and may lead to
unstable fault sliding. Additionally, the observation of reduced
ib values and an increase in tensile-induced fractures within
the fault zone could indicate a risk of fault instability, thereby
increasing the likelihood of induced seismicity. Therefore,
monitoring ib values and tensile-induced fractures is crucial
for assessing the stability of faults and the risk they pose in
triggering earthquakes. In the context of energy extraction,
continuous monitoring of these parameters is essential for
effective seismic hazard assessment and the development of
early warning systems, aiding in the mitigation of induced
earthquakes and ensuring safer extraction practices.
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