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Table S1. Mathematical models for gas transportation in nano-porous media. 

References Description Limitation 

(Klinkenberg, 1941) Empirical model with slippage effect. 
With no consideration of other flow 

mechanisms. 

(Baehr, 1990) Extension of Fick’s law for a multicomponent mixture Inappropriate for porous media. 

(Pruess, 1991) Linear addition of advection and diffusion fluxes. 
Ignore coupling between advective 

and diffusive mechanisms.  

(Webb and Pruess, 2003) 
Combination of diffusion (ordinary and Knudsen) and 

advection 

Underpredict cumulative flow under 

low permeability. 

(Wu and Persoff, 1998) Analytical solutions considering slippage effects.  
Ideal gas flow model at low pressure 

condition. 

(Beskok and 
Karniadakis, 1999) 

Empirical model considering all bulk gas flow mechanisms. Excessive empirical coefficient. 

(Civan, 2010) 
Considering various influence factors based on the Beskok and 

Karniadakis’s model. 
Excessive empirical coefficient. 

(Xiong et al., 2012) 
Considering adsorbed gas and surface diffusion based on the 

Beskok and Karniadakis’s model. 
Excessive empirical coefficient. 

(Wang et al., 2017) 
Considering monolayer and multilayer, and surface diffusion 

based on the Beskok and Karniadakis’s model. 
Excessive empirical coefficient. 

(Anderson et al., 2014) Continuous flow model modified by slip boundary condition. 
Slip factor is determined by the 

experiments. 

(Ertekin et al., 1986) Considering Darcy flow and molecular Fickian diffusion. Constant weight factors. For pores 
with circular cross-section.  

(Liu et al., 2002) Considering the continuum flow and Knudsen diffusion. With no consideration of the real gas 

effect. For pores with circular cross-

section. 

(Javadpour, 2009) Linearly superposing the continuum flow and Knudsen 

diffusion. 

With no consideration of the real gas 

effect. For pores with circular cross-

section. 

(Azom and Javadpour, 

2012) 

Extending Javadpour’s model by considering the real gas 

effect. 

For pores with circular cross-

section. 

(Darabi et al., 2012) Extending Javadpour’s model by considering the effect of pore 

wall roughness. 

For pores with circular cross-

section. 



(Ma et al., 2014) Extending Javadpour’s model by considering the real gas 

effect. 

Liner superposition. 

(Sakhaee-Pour and 
Bryant, 2012) 

Considering free molecular diffusion and slip flow. For pores with circular cross-
section. 

(Singh and Javadpour, 

2013) 

Considering advection and diffusion flow. For low Knudsen number condition. 

(Rahmanian et al., 2013) Considering viscous flow and gas diffusion. For pores with slit cross-section. 

(Singh et al., 2013) A non-empirical model considering viscous flow and Knudsen 

diffusion 

With no consideration of the real gas 

effect. 

(Wu et al., 2015) Considering slip flow and Knudsen diffusion. With no consideration of the 

adsorbed gas transportation 

mechanisms.  

(Sun et al., 2018) A non-empirical model for viscous flow considering various 

influence factors. 

With no consideration of the 

adsorbed gas transportation 
mechanisms. 

(Wu et al., 2016) Considering slip flow, Knudsen diffusion and surface diffusion. For pores with circular cross-

section. With no consideration of the 

real gas effect. 

(Li et al., 2017) Considering the continuum flow, surface diffusion and 

desorption. 

For pores with circular and slip 

cross-section separately. 

(Zhang et al., 2018) Considering viscous flow, Knudsen diffusion and surface 

diffusion. 

For pores with circular cross-

section. 

(Huang et al., 2018) Considering viscous flow, slip flow, Knudsen diffusion and 

surface diffusion. 

For pores with circular cross-

section. 
(Shen et al., 2018) Considering slip flow, Knudsen diffusion, surface diffusion and 

adsorption. 

For pores with slit cross-section. 
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