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Abstract:
Research on reservoir-unit division in fault-controlled oil and gas reservoirs is essential
for analyzing reservoir hydrocarbon migration and accumulation. Currently, most research
on reservoir-unit division has focused solely on the identification of faults and caves,
employing three-dimensional spatial visualization or other methods for a simple analysis
of their links. However, these approaches often lack a reasoning process that exploits the
links between faults and caves for deeper insights. For such complex oil and gas reservoirs,
a systematic analysis based on the interrelations between multiple geological factors is
needed. Therefore, this paper proposes a graph-based method for reservoir-unit division
in fault-controlled oil and gas reservoirs, enabling the representation of links between
faults and caves, and it presents further systematic analysis to derive the reservoir-unit
division results. A multi-attribute graph-clustering-based fault-extraction method is utilized
to achieve comprehensive fault representations as fault entities. More reliable cave-instance
segmentation results are obtained through attribute fusion, representing cavity entities. A
graph incorporating fault and cave entities is then created. Fault entities are classified
into several levels according to their spatial scale, and directed edges are utilized to
represent connectivity links between faults and caves. Moreover, a connectivity analysis
centered on caves was conducted using the created graph. Based on existing reservoir-
unit knowledge and the cave-connectivity analysis results, reservoir-unit division was
achieved. The proposed method provided reservoir-unit division results highly consistent
with the information contained in seismic data, offering a new perspective for multielement
integrated analysis in geophysical exploration.

1. Introduction
Fault-controlled oil and gas reservoirs (OGRs) are reser-

voirs whose formation and distribution are significantly influ-
enced and controlled by faults. OGRs are widely distributed
in regions including western China. Research on reservoir-
unit (RU) division in fault-controlled OGRs aids in analyzing
hydrocarbon migration and reservoir distribution, which pri-
marily involves research on faults, karst caves (KCs), and their

links.
Considerable research has been conducted on fault iden-

tification. Faults in seismic data are typically characterized
by lateral discontinuities, and early studies primarily focused
on finding such lateral discontinuities. Coherence is con-
sidered the most effective technique for fault identification.
For instance, Bahorich and Farmer (1995) introduced the
first-generation coherence attribute based on cross-correlation,
which had high computational speed but poor noise resis-
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tance. Furthermore, Marfurt et al. (1998) developed a second-
generation coherence attribute based on multi-trace similarity,
which effectively addressed the noise-resistance issue of the
first generation while maintaining high computational speed
and applicability. Moreover, Gersztenkorn and Marfurt (1999)
proposed a third-generation coherence attribute based on an
eigenstructure, providing more robust coherence estimates and
generating higher-resolution results, but with higher computa-
tional complexity. Subsequently, more coherence-based meth-
ods were introduced, including local structure entropy-based
coherence and fault likelihood (Cohen and Coifman, 2002;
Hale, 2013). In addition to coherence, variance and curvature
attributes have also been utilized for fault detection (Randen
et al., 2001; Roberts, 2001). In recent years, with the rapid
development of artificial intelligence (AI) and its impressive
performance across various fields, researchers have increas-
ingly focused on using deep-learning techniques for fault
detection. Some researchers have approached fault detection
as a classification problem. Di et al. (2018) proposed a two-
dimensional (2D) fault-detection network based on a convolu-
tional neural network (CNN). The input is a 2D seismic data
patch; the output, a classification result for the central point
of the patch. This method demonstrated better performance
than support vector machine and multilayer perceptron. Guit-
ton (2018) proposed a three-dimensional (3D) fault-detection
network based on CNN, where the input is a 3D seismic data
block, and the output is the classification result for the block’s
central point. In addition, Xiong et al. (2018) proposed a
CNN-based fault-detection network that uses three 2D seismic
data patches centered on the target point (inline, crossline,
and time slices) as input and outputs the probability that the
target point belongs to a fault. This network was trained using
automatic fault-picking results as fault labels and demonstrated
better fault continuity than coherence attributes. Others have
approached the problem as semantic segmentation, achieving
end-to-end fault identification. For example, Wu et al. (2019)
developed a 3D fault-detection network based on UNet to
detect faults from 3D seismic data. The network was trained
on synthetic 3D seismic data and achieved superior results to
some traditional methods in multiple field data. Furthermore,
Liu et al. (2020b) trained a residual UNet on synthetic data
for 3D fault detection, demonstrating more accurate fault
identification than coherence-based and UNet methods. Zhou
et al. (2021) proposed a progressive learning framework to
update the training dataset, reducing discrepancies between the
training and prediction data. They also introduced a fault-label
correctness metric to improve the framework’s stability. Over
time, research on fault identification based on AI has grad-
ually become mainstream, outperforming traditional methods
including seismic attribute-based approaches on some datasets.
Moreover, semantic segmentation-based methods are becom-
ing a key focus, with increasing attention being paid to their
performance on more complex field data. Most existing fault
identification networks often require data to be partitioned into
blocks to meet the input-size requirements of the network.
This way, the data information that networks can utilize for
fault identification comes from at most one data block, which
may limit the networks’ performance in complex situations.

Introducing more comprehensive data information can help
improve the fault identification performance in some complex
fault situations.

Fault extraction can yield the distribution of each fault
from fault-detection results. One method is to pinpoint fault
lines on 2D slices or sections and then group them together
to form 3D faults. Zhang et al. (2014) proposed a semi-
automatic fault-interpretation workflow, where coherence or
other discontinuity attributes are skeletonized to extract fault
lines on time slices. These lines are then grouped and utilized
to create 3D fault surfaces via triangulation. Moreover, Zhang
and Lou (2020) introduced a method to automatically create
faults by analyzing the topological links of seismic fault
attributes on inline, crossline, and time slices. Applications
on public datasets demonstrated the accuracy of this method
in generating fault surfaces. In addition, Lou et al. (2021)
grouped 2D fault lines based on connectivity and exclusivity
and merged the lines across time slices through topological
analysis to form fault surfaces. Experiments showed that
this method effectively handled conjugate faults in seismic
data. Another method directly processes faults in 3D space.
Hale (2013) utilized a method similar to Crease Surfaces
to extract ridge surfaces from the fault-likelihood attribute,
representing fault surfaces with quadrilateral meshes (Schultz
et al., 2009). However, this method has limitations when
dealing with intersecting faults, often resulting in holes at
intersections. Wu and Hale (2016) further improved on this
method using a simple linked data structure to create faults
and interpolating missing areas, successfully creating complete
fault surfaces that can deal with crossing faults. Zhou et
al. (2022, 2024b) proposed using fault graphs to obtain the
complete distribution of faults, effectively addressing com-
plex fault situations. Clearly, two critical study areas exist
in fault extraction: the integrity of extracted faults and the
ability to handle complex faults. The aforementioned studies
have improved performance in these two aspects to varying
degrees. Among these approaches, using fault graphs for fault
extraction represents a promising direction. By representing
fault distributions as fault graphs, we can effectively utilize the
interrelationships between multiple faults to analyze complete
faults from a broader perspective. This method holds great
potential in addressing complex fault situations.

Research on cave detection is similar to that on fault
detection. Researchers primarily use seismic attributes to
characterize KCs-including coherence, structural curvature,
and spectral decomposition-to highlight karst features in 3D
seismic data (Bahorich and Farmer, 1995; Roberts, 2001;
Chen, 2016). For instance, Li (2012) identified the typical
reflection characteristics of cavities at different depths and
utilized a combination of high-resolution coherence attributes
and impedance inversion bodies to predict the distribution
of cavities between wells. Moreover, Halpert et al. (2009,
2014) proposed a method that prioritizes attribute fusion and
segmentation to detect cavities, based on the observation that
different attributes of cavities emphasize distinct aspects of
their features. Chen et al. (2015) improved the ability to
detect weakly reflective cavities in seismic data by employing
diffraction wave-separation imaging techniques. In addition,
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Li et al. (2016) created physical models of cavities with
multiple scales and filling patterns and conducted forward
modeling to refine the influencing factors of cavity seis-
mic responses, reducing the ambiguity in cavity detection.
Recently, researchers have explored AI-based methods for
cave detection. For instance, Wu et al. (2020) introduced a
3D intelligent detection network for finding and analyzing
paleokarst collapse features, improving detection accuracy
and efficiency. Moreover, Zhang et al. (2022) incorporated
Bayesian deep learning into the seismic characterization of
deeply buried paleocaves, enhancing the model’s capability to
pinpoint complex geological bodies through uncertainty quan-
tification, integration of geological priors, and probabilistic
data-driven analysis while also improving transparency and
reliability. Zhu et al. (2024) utilized simulated the seismic
responses of various paleokarst structures to generate high-
quality training data for intelligent detection networks, achiev-
ing robust identification and generalization of features in field
seismic data. Subsequently, Gui et al. (2024) enhanced the
model’s ability to capture fault and karst features through
attribute fusion, improving resistance to noise and making the
detection results more reliable. Most of the aforementioned
methods are tailored to specific study areas for targeted KC
identification. Therefore, in practical applications, we must
select appropriate methods based on the characteristics of the
KCs in the study area. Alternatively, an attribute fusion method
can be adopted, selecting multiple attributes that best highlight
the KCs in the study area. Another option is to create synthetic
data with features similar to those of KCs in the study area to
train intelligent KC identification networks.

Research on fault-controlled OGRs has mostly focused
on the identification of faults and KCs, using 3D visual-
ization or other methods to perform simple analyses of the
links between them. To address the complexity of ultra-
deep fracture-controlled karst reservoirs, Liu et al. (2020a)
proposed a multilevel characterization method-including cavity
carving, identification of dissolved cavities, and delineation
of fracture zones-significantly improving reservoir-detection
accuracy. Furthermore, Hu et al. (2023) utilized seismic wave
impedance inversion and frequency-domain detection of multi-
scale faults to precisely characterize the spatial distribution of
cavities, dissolved cavities, and multi-scale faults, and they
further conducted 3D geological modeling of these features.
Similarly, Gui et al. (2024) achieved reservoir-detection re-
sults by directly integrating accurately identified faults and
cavities. However, further reasoning based on these links in
these methods is lacking. The challenge lies in effectively
representing the links between faults and KCs and enabling
relevant reasoning, calculations, and analysis.

To address this, this paper proposes a graph-based method
for RU division, achieving a representation of the links be-
tween faults and KCs based on accurate identification and
then presenting a systematic analysis conducted to obtain
RU division results. Using AI-based fault identification, our
method applies a multi-attribute graph-clustering method to
extract complete fault characterizations from the fault identi-
fication results, serving as fault entities. Then, attribute fusion
is utilized to obtain more reliable KC instance segmentation

Fig. 1. Illustration of an inline section from a work area in
western China.

results, which serve as the KC entities. A graph containing
fault and KC entities is then created, with faults classified
into different levels by spatial scale and directed edges repre-
senting the connectivity between faults and KCs, thus linking
faults and KCs. Furthermore, the created graph facilitates a
connectivity analysis of KCs. Based on existing knowledge
of RUs and the connectivity analysis results for KCs, the final
RU division was obtained. The proposed method provided RU
division results aligning well with the information contained
in seismic data, indicating that it offers a new method to
multielement integrated analysis in geophysical exploration.

2. Data description
The study data were from western China, with an inline

section shown in Fig. 1. The region above the horizon marked
by the black line consists of sandstone and mudstone deposits,
while the region below is carbonate rock. Our target area
was the carbonate region below the horizon marked by the
black line, where fault-controlled reservoirs had developed. As
seen in Fig. 1, there were numerous “beaded” reflection zones
below the marked horizon, which indicate KCs. Specifically,
in the study data, the number of inlines was 421, the number
of crosslines was 761, and each trace contained 100 sampling
points, corresponding to a depth range of 5,600–7,600m, with
a sampling interval of 5m in the depth dimension.

3. Methodology
In this section, the proposed method is described in detail.

The workflow of our method consists of two main parts: graph
creation and RU division. Graph creation involves finding fault
and KC entities from seismic data and representing the links
between them. The RU division is then performed by inferring
the division results in the created graph.

The graph to be created contains two types of entities:
faults and KCs. Faults play a vital role in controlling the
migration, accumulation, or destruction of oil and gas, while
KCs are important underground reservoirs for oil and gas.
Therefore, this section provides a detailed description of the
graph-creation process, including the identification of fault
entities, the identification of KC entities, and the determination
of the edge links between these entities.

Therefore, this section introduces the proposed method in
four steps: identification of fault entities, identification of KC
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Fig. 2. (a) The seismic data and (b) the computed fault attribute.

Fig. 3. (a) The fault strike data and (b) the fault dip data.

entities, graph creation, and RU division.

3.1 Identification of fault entities
Fault imaging is the foundation for obtaining fault entities.

Since AI-based methods have shown remarkable performance
in existing fault identification research, achieving better results
on some field data compared with traditional fault identifi-
cation methods, faults in the study area are detected with
an intelligence-based method. When using a fault intelligent
detection network to process field data, it is often necessary
to divide the data into blocks to meet the network’s input-
size requirements. Fault detection is then performed on each
data block, and the results are recombined to produce fault-
detection results for the entire data. Hence, the network can
utilize, at most, the information in a single data block for
fault detection, which severely limits its effectiveness in han-
dling complex fault situations. More complex fault situations
require the incorporation of additional data information. Zhou
et al. (2024a) introduced a feature fusion module into the
fault-detection network, which incorporates information from
surrounding data blocks into the fault-detection process for
the target data block. This expands the range of available data
information, significantly enhancing the continuity and noise
resistance of fault detection under complex fault situations.
Given the complexity of faults in the study area, this method
was applied to the seismic data shown in Fig. 2(a), and the
corresponding fault-detection result is shown in Fig. 2(b).
Although some noise was present in some areas, overall,
relatively good fault continuity was observed.

The fault attribute provides the probability value for each
data point belonging to a fault, and it is necessary to extract

each fault from the data and take each fault as a fault entity
in the created graph. In this paper, the distribution of faults
was represented using fault point sets. Therefore, the first
step was to extract fault points from the fault attribute. A
scanning method was applied to estimate the fault orientations
from the fault-attribute data, including the fault strike and dip
(Hale, 2013; Wu and Zhu, 2017). The calculation formula for
this process is as follows:

(ϕ,θ) = argmin
(ϕ,θ)∈ϕset×θset

f ∗gϕ,θ (1)

where × denotes the Cartesian product, and ∗ denotes the con-
volution operation. ϕset and θset are two predefined sequences
of angles for the strike and dip that had to be processed
by scanning, respectively. f represents the obtained fault-
detection result, and gϕ,θ denotes a 3D spatial filter, whose
spatial shape is defined by ϕ and θ . The computed fault strike
and dip are shown in Figs. 3(a) and 3(b), respectively. The
fault-attribute data were skeletonized to retain the fault points
located at the ridges. Since the fault attribute was a fault-
probability volume predicted by a neural network, a threshold
of 0.5 was utilized to further filter the skeletonized result, and
the results are shown in Fig. 4. It can be seen in Fig. 4 that the
filtered skeletonized result aligns well with the fault locations
in the seismic data. The retained data points in the filtered
skeletonized result represent the fault points.

Furthermore, the obtained fault points were grouped based
on the similarity of their orientations. Since the faults in the
study area are relatively complex, stricter constraints were
applied during the fault-points grouping process. Specifically,
fault points grouped had to have very similar fault orientations
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Fig. 4. The filtered skeletonized fault attribute.

Fig. 5. The fault-point groups in 3D space.

to ensure that all fault points in each group belonged to the
same fault, preventing the introduction of erroneous informa-
tion into subsequent analyses. The obtained fault-point groups
are shown in Fig. 5.

Each fault-point group represents only a part of a fault,
not a complete fault. The groups located on the same fault
had to be merged so that the merged groups would represent
the complete faults. The merging process was as follows: Each
fault-point group was treated as a node to create a fault graph,
and edges were connected between fault nodes based on spatial
distance constraints (with a selected distance constraint of 10
in our experiment). The attributes of the edges represent the
links between the fault segments indicated by the fault nodes.
The edge links were categorized into three types: same (two
nodes in one fault), non-same (two nodes not in one fault),
and other. Two fault nodes connected by the “same” edge
had to form a continuous and smooth surface in 3D space.
For fault nodes connected by a “non-same” edge, their spatial
distributions had to meet one of the following: there must
be a significant difference in fault orientation between their
adjacent areas, or there must be an overlap between them in the
direction perpendicular to the fault. Based on these criteria, the
attributes of the created edges could be evaluated. In this way,
a multi-attribute fault graph was obtained, as shown in Fig.
6. Our goal was to group nodes connected by “same” edges
together as much as possible under the strict constraint that
nodes connected by “non-same” edges would not be grouped.
To achieve this, we applied a multi-attribute graph-clustering
method proposed in Zhou et al. (2024b) to solve this problem,
resulting in a new fault graph. The merging process is shown
in Fig. 7(a), and the fault graph is shown in Fig. 7(b). The
3D distribution of fault points corresponding to each node
in the newly obtained fault graph is shown in Fig. 8. By
comparing Figs. 5 and 8, we can see that the faults become
more complete.

Fig. 6. The created fault graph.

Each fault node in the newly obtained fault graph was
treated as a fault entity, which represents a relatively complete
fault.

3.2 Identification of KC entities
In the study area, compared with faults, KCs exhibit

more distinct characteristics in seismic data, presenting typical
“beaded” features. Therefore, an attribute fusion method was
applied to pinpoint KCs from seismic data. The root-mean-
square (RMS) amplitude attribute and gradient-structure tensor
(GST) attribute were calculated separately. As shown in Fig. 9,
both attributes provided good imaging of the KCs. The RMS
attribute highlighted regions with strong amplitude responses,
which may indicate the presence of karst features including
caves. However, it showed limitations in resolving the finer de-
tails of complex karst structures and was susceptible to noise,
potentially leading to misinterpretations if not properly filtered.
The GST attribute, contrastingly, captured subtle variations
in seismic data, making it particularly effective for finding
structurally complex KCs. It provided clearer boundary delin-
eations, aiding in the interpretation of the extent and shape of
caves. In addition, it integrates filtering and statistical methods
that help mitigate noise. Nevertheless, under high noise levels,
the GST attribute could still be affected, potentially resulting
in mis-identifications where noise or non-geological features
were mistaken for KCs.

Given that the study area is deep underground, resulting in
low-quality seismic data, the fusion of the two attributes was
performed to achieve a more reliable outcome. Both RMS and
GST attributes were binarized. After multiple experiments, the
thresholds 2,000 and 0.00045 were selected for the binariza-
tion of the two attributes. The intersection of the two binarized
results was taken to achieve an attribute fusion analysis for
KC identification. Different KCs were distinguished based on
connectivity, with the results shown in Fig. 10. Fig. 11 displays
the identification result of KCs on three crossline sections,
which generally align with the seismic data. Each KC in Fig.
10 could be treated as a KC entity.

3.3 Graph creation
Based on the geological process of KC formation, it can

be inferred that large faults connect to smaller faults, which,
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Fig. 7. (a) The merging process and (b) the newly obtained fault graph.

Fig. 8. The fault-point groups in 3D space corresponding to
the new fault graph.

Table 1. Fault-level classification criteria and the number of
faults in each level.

Level Range of fault-point number Fault number

1 > 10,000 13

2 (5,000,10,000] 39

3 (1,000,5,000] 450

4 (500,1,000] 448

5 < 500 853

in turn, link to KCs. Therefore, faults need to be classified
into different levels according to their spatial scale to facilitate
subsequent analysis of the connectivity between faults and
KCs.

The fault-point number in each fault entity reflects the
spatial scale of the fault. A statistical analysis was conducted
on the distribution of fault-point counts across all fault entities.
Based on this analysis, faults were classified into five levels
according to the fault-point number: level 1, level 2, level 3,
level 4, and level 5, corresponding to fault-point counts of
over 10,000, 5,000-10,000, 1,000-5,000, 500-1,000, and below
500, respectively. The fault-level classification criteria for each
fault level and the corresponding number of faults are shown
in Table 1. The 3D spatial distributions of fault points for
each fault level are shown in Fig. 12. From Figs. 12(a)-12(e),
it is evident that from level 1 to level 5, the spatial scale
of the faults decreased progressively. For levels 4 and 5, the

spatial distribution of faults more closely resembled small-
scale fractures.

Based on the fault-level classification, the graph could be
created as follows: the identified fault entities and KC entities
were utilized as nodes, and edges were created between
nodes that were spatially close to each other. The edges were
directed, with their direction defined as pointing from lower-
level faults to higher-level faults (level 1 for the highest level)
or from KCs to other nodes. The direction of the edges aligned
with the conclusions drawn from the geological processes of
the KC formation mentioned earlier: large faults connected
to smaller faults, which, in turn, linked to KCs. This method
represents the geological process of KC formation as a directed
graph composed of faults and KCs, facilitating a subsequent
connectivity analysis centered on KCs. The created fault-KC
directed graph is shown in Fig. 13.

3.4 RU division
Based on the created graph, a connectivity analysis cen-

tered on KCs could be conveniently performed. Since the
graph was directed, it was convenient to determine which
nodes a specific KC node was connected to via directed edges.
According to the graph-creation process described earlier, the
connected nodes of a KC strictly follow the pattern of larger
faults connecting to smaller faults, which then connect to
the KC. The connectivity-analysis results of two KC nodes
are shown in Fig. 14, where the left two figures display the
connected nodes in the created graph, and the right two figures
show the corresponding spatial distribution of fault nodes and
KC nodes in 3D space.

RU division could then be performed based on the
connectivity-analysis results of KCs. Building on the earlier
conclusion inferred from the geological process of KC forma-
tion, further reasoning could be done: The KCs in the same RU
had to connect to the same fault of a certain scale (medium-
sized fault). In such cases, these KCs were interconnected
through small or medium faults, resulting in good connectivity.
This would enable more direct and significant interactions
between the caves, facilitating the formation of a stable RU for
hydrocarbon accumulation. During oil and gas development, it
may be sufficient to drill a well into one of the KCs to exploit
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Fig. 9. The seismic data, the RMS attribute, and the GST attribute and seismic data in three crossline sections: (a)-(c) the
seismic data, (d)-(f) the RMS attribute, and (g)-(i) the GST attribute. The first column to the third column correspond to
crossline 221, crossline 259, and crossline 566, respectively.

Fig. 10. The identified KCs in 3D space.

the hydrocarbon resources contained in all connected caves.
Given the current limitation of seismic data, a simplified
method was adopted to classify faults of levels 2 and 3 as
medium-sized faults based on their spatial scale. Thus, in the
KC connectivity-analysis results, KCs that were simultane-
ously connected to a level-2 or level-3 fault were grouped.
Using this method, all KCs could be grouped, with each group
representing a RU. The distribution of KCs in four RUs on a
horizon slice is shown in Fig. 15. It can be observed that the
KCs in each RU were spatially close to each other, aligning
well with our understanding of such geological structures.

4. Results and discussion
The distributions of KCs in the four RUs on a horizon slice

are shown in Fig. 15. As previously mentioned, KCs in the
same RU are spatially clustered, which aligns with the actual
geological conditions. To analyze the specific role of faults in
RU division, the background in Fig. 15 replaced seismic data
on the horizon slice with fault attributes on the horizon slice.
The updated results are shown in Fig. 16. From Figs. 16(a)-

16(d), it can be observed that the distribution of KCs in the
same RU generally corresponded to the spatial distribution of
a specific fault. This supports the earlier inference that KCs
in the same RU are simultaneously connected to a medium-
sized fault, confirming that the RU division aligned with the
expected results. To further explore the link between KCs and
faults in the same RU, we visualized the RUs (KCs) and their
connected faults in the created graph and their corresponding
distribution in 3D space, as shown in Fig. 17, where the
left four figures display the connectivity links in the created
graph, while the right four figures show the corresponding 3D
spatial distributions. From the right four figures in Fig. 17,
it is clear that the KCs in a RU were spatially clustered and
that their spatial distribution closely aligned with the spatial
distribution of surrounding faults. The number of KCs within
the four RUs shown in Fig. 17 and the number of faults of
each level connected to these KCs are presented in Table 2.
It can be observed that the number of medium-sized faults
(levels 2 and 3) in each RU is relatively higher. The connected
medium-sized faults essentially define the spatial distribution
range of each RU. It can also be observed in Fig. 17 that
the connected faults generally extended to deeper regions,
which is consistent with the understanding of oil source faults.
The hydrocarbons came from the deeper layers of the earth,
and through the faults that extend to the deeper layers, the
hydrocarbons could be transported to and stored in the caves
located in shallower locations. Therefore, from the distribution
of faults surrounding the RU, it is highly likely that the KCs
in the identified RUs are filled with hydrocarbons.

The current study was based on seismic data, determining
connectivity through the spatial link between faults and KCs.
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Fig. 11. The identified KCs in (a) crossline 221, (b) crossline 259 and (c) crossline 566.

Fig. 12. Fault points contained in five fault levels in 3D space: (a) level 1, (b) level 2, (c) level 3, (d) level 4 and (e) level 5.

Fig. 13. The created fault-KC directed graph.

However, in practical situations, the internal connectivity of
faults and KCs is influenced by other factors, including infill
materials and porosity. Therefore, in the existing framework,
production data can be integrated. For example, information
on infill materials and porosity can be utilized to assess oil
and gas migration in faults and KCs. The assessment results
can then be incorporated as attributes of fault and KC entities
in the created graph, further refining the connectivity analysis
results.

5. Conclusion
A graph-based fault-controlled RU division method was

proposed for OGRs, which identifies faults and KCs separately

Table 2. The number of caves and faults in the four RUs in
Fig. 17.

Cave
Fault number

Level 1 Level 2 Level 3 Level 4 Level 5 Sum

6 3 7 22 3 5 40

11 28 6 14 5 5 58

11 7 8 33 8 9 65

12 31 16 14 4 4 69

from seismic data and uses a graph to integrate the re-
sults, obtaining RU division results. For fault identification, a
multi-attribute graph-clustering-based fault-extraction method
is employed to achieve complete fault characterization from
fault imaging results. In KC identification, attribute fusion
is utilized to obtain more reliable cave-instance segmentation
results. The fault and KC results are then combined by creating
a graph that links them, with faults classified into different
levels by spatial scale and directed edges representing the
connectivity between faults and KCs. This method enables
connectivity analysis of KCs. Based on existing knowledge
of RUs and the connectivity analysis results, RU divisions
were achieved. Thus, the proposed method offers a new per-
spective for multi-element integrated analysis in geophysical
exploration.

Note that, as the current study was based on seismic data,
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Fig. 14. The connectivity-analysis results of two KC nodes: (a) the connected node of one KC node in the graph and (b) the
corresponding 3D spatial distribution of these nodes, and (c) the connected node of another KC node in the graph and (d) the
corresponding 3D spatial distribution of these nodes.

Fig. 15. Four RUs on a horizon slice: (a), (b), (c) and (d) each correspond to a RU.

Fig. 16. Four RUs on a horizon slice with the background of the fault identification results: (a)-(d) each correspond to a RU.
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Fig. 17. Four RUs (KCs) and their connected faults: (a), (c), (e), and (g) are faults and KCs in the created graph, and (b), (d),
(f) and (h) are the corresponding distributions in 3D space.

the validity of the results requires further verification. In future
studies, production data can be incorporated to add more
information to the created graph, yielding analysis results that
better align with actual production conditions.
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