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Abstract:
Modeling of multiphase flow and reactive mass transport in porous media remains a pivotal
challenge in the realm of subsurface energy storage, demanding a nuanced understanding
across varying scales. This review paper presents a comprehensive overview of the latest
advancements in multiscale modeling techniques that address the inherent complexity of
these processes. Three cutting-edge approaches are presented: hybrid multiscale simulation,
which leverages both continuum and discrete modeling frameworks to enhance model
fidelity; approximated physics, which simplifies complex reactions and interactions to
expedite computations without significantly sacrificing accuracy; and machine-learning-
assisted multiscale simulation, which integrates predictive analytics to refine simulation
outputs. Each method presents distinct advantages and hurdles, collectively advancing the
precision and computational efficiency of subsurface modeling. Despite the substantial
progress, we recognize the persistent challenges, such as the need for more robust
coupling techniques, the balance between model complexity and computational feasibility,
and effectively combining machine learning with traditional physical models. Promising
directions for future work are discussed to address these challenges, aiming to push the
boundaries of current multiscale modeling capabilities.

1. Introduction
Energy transition in the subsurface is crucial for achiev-

ing sustainable development and mitigating climate change
impacts. It involves the shift from traditional fossil fuel
extraction to cleaner and renewable energy sources such as
geothermal energy, carbon capture and storage, and subsurface
energy storage. This transition helps reduce greenhouse gas
emissions, promotes energy security, and supports the global

move towards a low-carbon economy (Bauer et al., 2013;
Gasanzade et al., 2021). As the demand for energy grows,
the development of efficient and scalable subsurface storage
solutions becomes paramount. These technologies not only en-
able the effective integration of intermittent renewable energy
sources into the grid but also enhance the resilience of energy
systems against environmental and market fluctuations (Krevor
et al., 2023). By leveraging the existing geological formations
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and infrastructure, subsurface energy storage presents a viable
pathway to stabilize energy supply and foster sustainable
energy landscapes worldwide.

Subsurface energy storage in porous media presents a
complex challenge due to the heterogeneous nature of geolog-
ical formations and the intricate interactions between multiple
phases of fluids and solids (Bauer et al., 2017; Kabuth et al.,
2017). The variability in pore structure and mineral compo-
sition across different scales—from the microscopic to the
field level—significantly impacts the behavior and efficiency
of storage systems. This complexity is further compounded
by the reactive transport of chemical species, which can
alter the physical properties of the storage medium over time
(Tarkowski, 2017; Crotogino et al., 2018; Gasanzade et al.,
2021). Additionally, the operational dynamics of injecting
and extracting fluids, such as compressed air, hydrogen, or
supercritical CO2, require precise control and understanding to
prevent issues like leakage, induced seismicity, and reservoir
degradation. These factors make the modeling and optimiza-
tion of subsurface energy storage systems a critical area of re-
search, necessitating advanced multiscale modeling techniques
to accurately predict and enhance system performance.

Given the complexities of multiphase flow and reactive
mass transport in heterogeneous porous media, multiscale
modeling is indispensable in environmental engineering and
geosciences to optimize energy storage technologies (Luo
et al., 2009; Golparvar et al., 2018; De Santis et al., 2021;
Ramesh Kumar et al., 2021). This approach is crucial as it
spans a wide range of spatial and temporal scales—from the
microscopic scale of individual pore spaces to the macroscopic
scale of entire geological formations (Fig. 1). Multiscale mod-
eling captures key physical and chemical processes occurring
at different scales, providing insights into the behavior of
energy storage systems (Joekar-Niasar et al., 2012; Sheng
and Thompson, 2013). It integrates models from molecu-
lar dynamics and pore-scale models to continuum-scale and
field-scale models, allowing for a detailed representation of
physical and chemical interactions. These interactions among
the injected gases, resident fluids, and the porous matrix
can lead to complex reactive transport processes, such as
dissolution, precipitation, and chemical reactions that alter the
porosity and permeability of the medium (Li et al., 2020;
Subramaniam, 2020; Heinemann et al., 2021). By accurately
simulating these processes, multiscale modeling contributes
significantly to optimizing gas injection strategies, assessing
storage capacities, predicting the long-term fate of stored
gases, and evaluating potential environmental impacts, thereby
ensuring the efficiency, safety, and sustainability of energy
storage solutions (Tryggvason et al., 2013; Carrillo et al.,
2020).

Molecular simulation has emerged as a critical tool in
advancing our understanding of gas storage mechanisms at
the molecular level, offering insights into the interactions,
behaviors, and properties of gas when introduced into various
storage mediums (Liu and Wilcox, 2012, 2013; Ma and Ran-
jith, 2019). Despite its significant contributions, the accuracy
of molecular simulations heavily depends on the quality of
the mathematical models and the parameters used, which

might not always capture the complexity of real-world systems
(Zhang et al., 2020). Additionally, computational constraints
limit the scale of simulations, making it challenging to directly
extrapolate findings to the macroscopic levels relevant for
industrial applications (Ma and Ranjith, 2019).

Pore-scale simulation is another way to enhance our un-
derstanding and optimization of gas storage within geological
formations (Meakin and Tartakovsky, 2009; Wang et al.,
2023b; Yang et al., 2023; Xie et al., 2024). By offering
detailed insights into the microscopic interactions between gas
and the porous rock matrix, these simulations enable us to
predict the behavior of gas injection and storage with greater
precision (Blunt et al., 2013; Icardi et al., 2014; Molins,
2015; Xie et al., 2023). Such detailed understanding aids in
maximizing storage efficiency, ensuring the long-term/periodic
security of the stored gas, and mitigating leakage risks.
The complexity and heterogeneity of geological formations
at the microscopic level introduce significant challenges in
accurately modeling the physical processes involved (Liu and
Mostaghimi, 2017; Liu et al., 2020; Wang et al., 2023a).
The computational resources required for these simulations
are substantial, making it difficult to scale up to larger, more
practical field scales (Soulaine and Tchelepi, 2016; Chen et al.,
2022). These limitations necessitate the development of more
advanced computational methods and upscaling techniques to
bridge the gap between pore-scale phenomena and field-scale
applications.

The application of Darcy-scale simulation in energy stor-
age represents a critical advancement in the field of zero-
carbon process (Lyu and Voskov, 2023; Awag et al., 2024).
By employing models that operate at the Darcy scale, one
can better understand the flow and behavior of gas within
subsurface geological formations, thereby enhancing the ef-
ficacy and safety of storage operations. These simulations are
pivotal for predicting the migration patterns of injected gas,
assessing storage capacity, and evaluating potential leakage
risks, which are essential for the long-term success of energy-
storage projects aimed at mitigating climate change (Pau et al.,
2010; Martinez and Hesse, 2016; Vialle et al., 2016; Lyu et al.,
2021b). However, the simplifications required for these models
may overlook finer-scale geological heterogeneities and fluid
interactions, potentially leading to inaccuracies in predictions
(Ajayi et al., 2019). Furthermore, the computational demands
of these simulations can be substantial, limiting their resolu-
tion and the detail they can provide (Pau et al., 2010).

The development of multiscale modeling in subsurface
energy storage and multiphase flow has evolved significantly
over the past few decades, driven by the need to capture
complex fluid behaviors across different spatial and temporal
scales. Early approaches primarily relied on continuum-scale
models, such as extensions of Darcy’s law and capillary
pressure formulations, to describe multiphase flow in porous
media. As computational resources advanced, pore-scale mod-
eling techniques, including direct numerical simulations and
Lattice Boltzmann Methods (LBMs), provided more detailed
insights into fluid displacement and reactive transport pro-
cesses (Blunt et al., 2002; Bijeljic and Blunt, 2007; Balhoff and
Wheeler, 2009; Blunt et al., 2013). The emergence of hybrid



Lyu, X., et al. Advances in Geo-Energy Research, 2025, 15(3): 245-260 247

Gas

Injection well

>
70

0 
m

 to
 

su
rf

ac
e

10
0 

m

Caprock:
⚫ Diffusion
⚫ Capillary leakage
⚫ Fracturing
⚫ Buoyancy pressure

Structural geology:
⚫ Fault leakage
⚫ Far and near field 

stress change
⚫ Reactivation
⚫ Overpressure

Gas-brine-rock:
⚫ Fluid-rock interaction
⚫ Rock dissolution and 

precipitation
⚫ Formation damage
⚫ Particle movement

Injection:
⚫ P/T change
⚫ Multiphase processes
⚫ Stress/strain changes
⚫ Wellbore corrosion

Dissolution:
⚫ P/T change
⚫ Multicomponent 

impurity
⚫ Single/multiple phases
⚫ salinity

Residual trapping:
⚫ Pore structure
⚫ Multiphase processes
⚫ Relative permeability and 

capillary hysteresis
⚫ Salt precipitation

Fig. 1. Gas storage in porous media highlighting all geological uncertainties (modified from Heinemann et al. (2021)).

multiscale frameworks, which integrate molecular dynamics,
pore-scale modeling, and continuum-scale formulations, has
further refined predictive capabilities for subsurface systems
(Balhoff et al., 2007; Tartakovsky et al., 2008; Scheibe et al.,
2015).

More recently, approximated physics-based approaches and
machine-learning-assisted multiscale simulations have gained
traction, offering computationally efficient alternatives to tra-
ditional physics-driven methods (Zhu et al., 2022). Machine
Learning (ML) techniques, including deep learning, Con-
volutional Neural Networks (CNNs), and Physics-Informed
Neural Networks (PINNs), have been increasingly applied
to model complex subsurface processes such as multiphase
flow, reactive transport, and reservoir characterization (Wang
et al., 2021b; Amini et al., 2022; Zhou et al., 2022; Marcato
et al., 2023). These approaches enable rapid surrogate model-
ing, reducing the computational cost of traditional numerical
simulations while preserving key physical constraints. Data
assimilation techniques, such as Bayesian inference and en-
semble learning, have also been integrated with ML models
to enhance uncertainty quantification and parameter estimation
in subsurface energy applications (Tang et al., 2021b; Wu
et al., 2023a). Furthermore, hybrid artificial-intelligent-physics
approaches leverage domain knowledge to ensure physically
consistent predictions, bridging the gap between purely data-
driven models and conventional physics-based simulations
(Karimpouli et al., 2022). As AI-driven methods continue
to evolve, their role in subsurface modeling is expanding,
offering new opportunities for optimizing energy storage, CO2
sequestration, and hydrocarbon recovery.

Due to the advantages and limitations of different-scale
simulations, the development and refinement of multiscale

modeling techniques continue to be of paramount importance.
Advances in computational methods, increased understanding
of underlying physical and chemical processes, and improved
data availability from experimental and field studies are driving
progress in this area. This paper concisely outlines the latest
developments, pinpoints challenges, and offers insights into
the future of subsurface energy storage. Its goal is to signifi-
cantly advance the adoption of multi-scale numerical coupling
simulation technology within this field.

2. Mathematical models in different scales
Understanding the simultaneous flow of multiple phases

through porous media in different scales is crucial in various
fields, e.g., hydrogeology, petroleum engineering, and energy
storage. The multiscale modeling approach integrates infor-
mation from macroscopic to microscopic scales, capturing the
heterogeneity of porous media and providing insights into fluid
behavior at both large and small scales (Fig. 2). This holistic
perspective enables us to simulate and analyze multiphase
flow phenomena accurately, offering valuable insights for
optimizing resource recovery and environmental management.

2.1 Molecular dynamic simulation of micro- and
nanoscale flow

Molecular dynamics simulation is a computational tech-
nique used to study the behavior of molecules and atoms
within complex hydrocarbon systems. It involves the simula-
tion of the motion and interactions of individual particles over
time, providing insights into the thermodynamic and kinetic
properties of the materials. The motions of each particle can
be written as follows:
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where subscript i(k) denotes particle i(k),
−→
i is the unit vector

in x-coordinate. m is the particle mass and r̈i is the position
of the particle i. fi is the total force. Nm is the total number of
particles in the simulation system, and Nw is the total number
of particles on the solid wall.

−→
F ik is the molecular force that

particle k exerts on particle i due to Lennard-Jones potential.−→
F ikw represents the molecular force between particle i and all
the solid wall particles k.

−→
F sou is the external force, which

makes the fluid deviate from the equilibrium, e.g., gravity,
pressure, or electric force. When a two-body potential model
is applied, the interaction force between a pair of molecules
comes from the following relation:

−→
F ik =−∇U(rik) (2)

where U(rik) is the potential energy function, and rik is the
magnitude of the distance between two arbitrary particles.

The Lennard-Jones pair-wise potential energy function can
be expressed as:

U(rik) = 4ε

[(
σ

rik

)12

−
(

σ

rik

)6
]

(3)

where σ is a molecular length scale, and ε is an interaction
strength parameter. The movement of the fluid particles can be
predicted by these basic physics laws, with special conditions,
e.g., the boundary and initial conditions.

2.2 Pore-scale modeling of multiphase flow in
porous media

Pore-scale simulation is one important way to understand
the complicated interaction between fluids and pore structures
during fluid flow and solute transport. The conventional incom-
pressible Navier-Stokes (NS) equations and the convection-
diffusion equation are used to describe the multiphase flow
and reactive mass transport in porous media:

∇ ·uj = 0, j = 1, · · · ,np (4)

∂tuj +uj ·∇uj =−
1
ρ j

∇p j +µ j∇
2uj, j = 1, · · · ,np (5)

∂tC+uj ·∇C = D∇
2C+R, j = 1, · · · ,np (6)

where u, C, and p denote the velocity vector of field, solute
concentration, and pressure, respectively. The subscript j and
np represent the phase index and the number of phases in
the system. D is the molecular diffusion coefficient, which
depends on the type of molecules. R is the source term to
describe the reaction in the system. The interplay between
the fluid and the pore structure is facilitated through the ap-
plication of appropriate boundary conditions. Typically, pore-
scale models exhibit resolutions in the micron range, enabling
precise characterization of microscale phenomena that are
beyond the scope of Darcy-scale models.

2.3 Darcy-scale simulation of multiphase flow in
porous media

The Darcy-scale simulation of multiphase flow in porous
media is a complex numerical modeling approach used to
understand and predict the behavior of fluids as they move
through porous geological formations. This type of simulation
is based on Darcy’s law, which describes the flow of a fluid
through a porous medium. In multiphase flow scenarios, differ-
ent fluids necessitate sophisticated mathematical models and
computational techniques to accurately represent the physical
processes involved:

∂

∂ t

(
φ

np

∑
j=1

xc jρ js j

)
+∇ ·

np

∑
j=1

(xc jρ ju j + s jρ jJc j)

+
np

∑
j=1

xc jρ jq̃ j = 0, c = 1,2, . . . ,nc (7)

u j =−K
kr j

µ j
(∇p j−ρ jg∇z), j = 1, · · · ,np (8)

pw = pn− pc (9)
np

∑
j=1

s j = 1 (10)

Jc j =−φDc j∇xc j (11)
where u, p and s are the Darcy velocity, pressure, and satura-
tion, respectively. D is the effective diffusion coefficient. c and
j are the index of component and phase, respectively. These
variables denoted by a bar represent parameters at the Darcy
scale, obtained through measurement or upscaling techniques.
φ and k are formation porosity and permeability. ρ , xc j, kr,
and µ are phase density, component mole fraction in a phase,
relative permeability, and kinematic viscosity, respectively. g
and z are gravitational acceleration and vertical depth. Jc j is
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Fig. 3. Schematic diagram of multiscale simulations.

the diffusion-dispersion tensor of component c in phase j.

3. Bridging-scale techniques

3.1 Hybrid multiscale simulation
The transition across scales in porous media modeling re-

mains a fundamental challenge, particularly in linking molec-
ular dynamics with pore-scale representations and further
extending these descriptions to continuum-scale models. Hy-
brid multiscale simulation, which amalgamates continuum and
atomistic perspectives, offers a powerful tool for understanding
and predicting the behavior of complex systems across differ-
ent disciplines (Fig. 3). The efficiency of such a hybrid model
is significantly influenced by the comparative dimensions of
the molecular dynamics and continuum regions, alongside the
magnitude of the interface through which data exchange occurs
between the two subdomains.

Regarding the advanced simulation approaches for molec-
ular simulation, AB Initio Molecular Dynamics (AIMD) and
quantum mechanics/molecular mechanics methods stand out
due to their ability to provide a detailed picture of molecular
systems at the atomic level. AIMD combines quantum me-
chanics principles with classical molecular dynamics, allowing
for the simulation of molecular systems with electrons explic-
itly included. This method is particularly useful for studying
chemical reactions, material properties at the atomic scale, and
the behavior of molecules in various environments. It provides
insights that are unattainable through classical molecular-
dynamics simulations alone. AIMD and quantum mechan-
ics/molecular mechanics methods embody the forefront of
computational chemistry and materials science, enabling the
exploration of complex molecular phenomena with remarkable
detail and accuracy.

Multiscale simulation, integrating molecular simulation
with the LBM or Computational Fluid Dynamics (CFD)
methods, represents a cutting-edge approach in computational
physics and engineering to study complex fluid dynamics
and transport phenomena across different scales (Smith and
Theodorakis, 2024). In this hybrid framework, molecular

simulation provides detailed insights into the microscopic
interactions and behaviors of individual particles or molecules
(Fig. 4). This microscopic information is essential for ac-
curately capturing phenomena at the nanoscale, where the
specific interactions between molecules significantly influence
the overall behavior of the system. On the other hand, the
LBM, a mesoscopic approach, excels at simulating fluid flows
at larger scales by treating the fluid as a collection of discrete
particles and tracking their distribution functions over a lattice
mesh. By coupling these two methodologies, the multiscale
simulation leverages the strengths of both: the detailed repre-
sentation of particle interactions in molecular simulation for
accurate boundary and initial condition definitions, and the
efficient handling of fluid flow at larger scales in LBM. This
synergistic integration allows for the simulation of complex
systems with high fidelity, spanning from the molecular up
to the macroscopic level, thus bridging the gap between
microscopic mechanisms and their macroscopic manifestations
in fluid dynamics and material science. Similarly, the algebraic
multiscale solver, initially used for continuum scale, leverages
an algebraic approach that requires only the fine-scale system
and a superimposed multiscale coarse grid, allowing it to
be applied to arbitrary geological models without additional
preprocessing (Hajibeygi et al., 2011; Hajibeygi and Tchelepi,
2014; Wang et al., 2014). A key innovation is its hybrid
two-stage strategy: a global solver operates exclusively at the
coarse scale, reducing computational costs, while various fine-
scale local preconditioners, including correction functions,
block incomplete lower–upper factorization, and ILU, enhance
convergence and numerical stability. Notably, algebraic multi-
scale solver demonstrates superior efficiency and flexibility,
particularly in handling complex geological heterogeneity,
making it a significant advancement in multiscale reservoir
simulation techniques.

Combining pore-scale modeling with reservoir simulation
allows for more comprehensive and accurate descriptions of
fluid flow and transport phenomena. By integrating these two
scales, one can leverage the detailed insights gained from
pore-scale models to inform and enhance the parameterization
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Fig. 4. A domain decomposition coupling arrangement, which includes: (1) an averaged region at the bottom boundary to
determine the CFD boundary, and (2) a constrained region at the top boundary of the domain where a termination force is
applied to prevent molecules from escaping. Additionally, a buffer zone is incorporated to ensure that the constrained molecular
region does not directly interact with the averaged region used for boundary determination (Smith and Theodorakis, 2024).

deficiency: it means that the volume fraction contributed by the
small pores is insignificant, since their number density was no
greater than pores with 1000 times the volume. The method pro-
posed here does not suffer from this deficiency. Another natural
model to use when constructing a network model of a pore-space
would be the so-called ‘‘scale-free’’ networks [34], that have an
essentially fractal topology. The main disadvantage of such net-
works is that they do not embed well in 3D Euclidean space – i.e.
one invariably needs to have some throats connecting non-adja-
cent pores. Real porous media might have pores on different scales,
but the pores nevertheless span a finite size range and are embed-
ded in a Euclidean space.

Many packing algorithms (such as sphere-packing algorithm
used in this work, [35]) are capable of creating heterogeneous grain
packings with a wide distribution of grain sizes. Pore-network
model construction for these packings is typically done via Dela-
unay tessellation (DT) of the grain centers. DT, however, struggles
with creating meaningful pores e.g. where very numerous small
grains touch a large grain and results in many distorted pores.
We have exemplified this situation elsewhere [36]. Voro++ library
(http://math.lbl.gov/voro++/) can create weighted Voronoi tessel-
lation (dual of DT) for packings with wide range of sizes and it
could be extended to create pore throat networks (private commu-
nication with Dr. C. Rycroft). Alas, to our knowledge no successful
attempt exists to date.

2.3. Two-scale pore network construction

We will refer to the pore-throat network that corresponds to
the inter-granular porosity as macronetwork, and any network

mapping the microporosity as micronetwork. The main algorithm
steps are as follows:

(1) Construct a macronetwork of the inter-granular pore space
(see Section 2.2)

(2) Designate microporous regions (these regions could be indi-
vidual grains e.g. regions of the partially dissolved solid
phase, or individual pores containing porous fillers such as
clay). In this work, we use f to denote the fraction of macrop-
ores or grains that contain the micropores.

(3) Choose a scaling factor b for microporous regions (ratio of the
macro to micro length scale, noting that different regions
can have different scaling factors). Although we used integer
scaling factors in this work, the choice of b is arbitrary and
non-integer numbers can be used as well.

(4) Rescale and map a microporosity network onto each desig-
nated microporous region; retain the pores and throats of
the mapped network that fall within the microporous region
and connect them with all the existing pores and throats
(macro or micro). Repeat the procedure until all of the
microporous regions are processed.

Steps (1)–(4) result in a multiscale network that contains both
macroporosity and microporosity.

Before we proceed with a more detailed explanation of the algo-
rithm, we comment on the origin of the micronetwork. This work
uses networks representative of granular media on both scales.
This is simply a matter of convenience, however, and we do not in-
tend to imply that microporosity is granular in nature: most are
not granular at all. The micronetwork that is to be rescaled onto

Fig. 1. Delaunay tessellation schematic for identifying the pore-throat network in granular media. (a) Delaunay tessellation input is a packing of grains (spheres in this work).
(b) Tetrahedral cell representing a pore defined by four neighboring spheres. The pore space within each tetrahedron represents pore, and the tetrahedral sides are the
tightest cross-sections (throats) on the path between two neighboring pore centers. (c) The final result is a network of pores (shown as spheres, colored/shaded by size) and
throats (identified as cylindrical connections).

Fig. 2. Schematic of two-scale pore network construction for (a) grain-filling, and (b) pore-filling microporosity. Intergranular (‘‘macro’’) network pores are shown as larger
blue circles. For designated microporous regions, a network similar to what is observed in available images/data is rescaled with an appropriate length ratio and mapped into
the microporous region, in (a) grains are microporous, in (b) pores are microporous. Throats connecting the two networks across the known boundary of the two are identified
in order to get a single network that contains both length scales and are shown in red. The key feature is that the connections between two length scales can be non-planar
(and arbitrarily complex). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A. Mehmani, M. Prodanović / Advances in Water Resources 63 (2014) 104–119 107

Fig. 5. Schematic of two-scale pore network construction for (a) grain-filling and (b) pore-filling microporosity (Mehmani and
Prodanović, 2014).

of Darcy-scale models. For example, pore-scale simulations
can be used to calculate effective permeability and relative
permeability curves, which are then upscaled and incorpo-
rated into Darcy-scale simulations to improve their accuracy
in predicting macroscopic flow behavior. One notable study
that highlights the potential of this multi-scale approach is
the work by Blunt et al. (2013), which utilized pore-scale
imaging and modeling to derive petrophysical properties of
carbonate rocks. Their findings demonstrated that pore-scale
simulations could provide detailed characterizations of pore
connectivity and distribution, which are critical for accurate
Darcy-scale modeling. Another significant contribution is the
research by Bijeljic et al. (2013), where they employed multi-
scale imaging techniques to capture the pore structure and
subsequently performed flow simulations to understand the
impact of pore-scale heterogeneities on macroscopic transport
properties. The integration of pore-scale and Darcy-scale mod-
els has also been effectively applied in studying multiphase
flow in porous media (Fig. 5). For instance, a method is
developed to compute relative permeability from pore-scale
simulations and demonstrated that incorporating these detailed
pore-scale data into Darcy-scale models could significantly

enhance the predictive capabilities for two-phase flow systems
(Raeini et al., 2012; Mehmani and Prodanović, 2014).

Coupling reservoir simulation and molecular simulation
on massively parallel High-Performance-Computing (HPC)
systems represents a sophisticated computational approach
designed to bridge the gap between macroscopic reservoir
behaviors and microscopic fluid interactions (Bao et al., 2016).
This approach leverages the immense computational power
of HPC systems to simultaneously run large-scale reservoir
simulations, which predict fluid flow and phase behavior on
the scale of kilometers, and molecular simulation simulations,
which model the physical and chemical interactions between
molecules at the nanometer scale (Fig. 6). By integrating these
two levels of simulation, a more comprehensive understanding
of subsurface fluid dynamics can be achieved, encompassing
both the large-scale effects of reservoir geometry and hetero-
geneity, as well as the microscopic influences of fluid viscosity
and wettability. The parallel nature of HPC systems allows
for the distribution of computational tasks across thousands
of processors, significantly reducing the time required for
simulations and enabling the handling of complex models
that were previously infeasible, thus providing insights into
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Fig. 6. Flow chart of the computational framework for molecular simulation and reservoir-simulation toolbox (modified from
Bao et al. (2016)).

optimizing carbon sequestration strategies with unprecedented
detail and accuracy.

3.2 Approximated physics and advanced
nonlinear solvers

Due to the highly nonlinear properties across different
scales of time and space, one useful technique is to simplify
the complex, underlying physical laws governing small-scale
interactions to make large-scale simulations computationally
feasible without significantly sacrificing accuracy. Upscaling
techniques, aiming to derive macroscopic properties from
microscopic behavior, help in bridging the gap between pore-
scale phenomena and field-scale applications, ensuring that the
detailed interactions at the pore level are adequately repre-
sented in larger-scale models. For instance, homogenization
techniques and volume averaging are commonly employed
to obtain effective parameters, e.g., porosity, permeability,
and reactive surface areas that can be used in Darcy-scale
models (Zhang et al., 2021). Another improvement in reactive
mass transport is the development of a nonlinear element
balance formulation that seamlessly integrates thermodynamic
and chemical equilibria within a reactive-compositional flow
model (Kala and Voskov, 2020; Ahusborde et al., 2024;
de Hoop et al., 2024). Unlike traditional molar-based for-
mulations, which often struggle with numerical instability
and inefficiencies in handling complex phase behavior, this
approach leverages the consistent reduction of component
conservation equations to element conservation equations, en-
suring a more robust and computationally efficient framework.
A key innovation is the incorporation of chemical equilibrium
constraints directly into the multiphase multicomponent neg-
ative flash calculations, enabling the simultaneous solution of
phase and chemical equilibria. By introducing the Equilibrium
Rate Annihilation matrix and modifying the multiphase flash
equations to work with element mole fractions, the method
provides a generalized treatment of precipitation and dissolu-
tion reactions in multiphase flow systems. In addition, some
reactive transport simulators couple solute transport equations
with chemical kinetics. These simulators often implement
approximations such as local equilibrium assumptions, where
it is presumed that chemical reactions reach equilibrium in-

stantaneously compared to the timescale of transport processes
(Steefel et al., 2015). This significantly reduces the computa-
tional burden as it avoids the need to solve complex differential
equations governing reaction kinetics. These techniques have
proven effective in various applications, from groundwater
contamination remediation to enhanced oil recovery.

The hybrid analytical-numerical method, developed by
Flyer and Fokas (2008), offers another possibility to solve
complex problems in multiphase flow and reactive mass trans-
port. This technique is particularly valuable in scenarios where
exact solutions are available for specific parts of a problem
domain, or where boundary conditions and singularities pose
challenges that purely numerical methods might struggle to
handle efficiently. By integrating analytical solutions for parts
of the domain where they are applicable, this approach can
significantly enhance the accuracy and efficiency of the simu-
lation. It provides a way to impose rigorous solutions to sub-
sets of a problem, ensuring that the overall numerical solution
adheres more closely to the physical reality. Furthermore, this
method can reduce computational costs by simplifying aspects
of the model where high precision is crucial but difficult to
achieve numerically (Meunier et al., 2017; De Barros et al.,
2019).

Though these approximations can predict the phase dy-
namics in porous media, the underlying physics is expressed
either by empirical correlations or simple models to reduce the
nonlinearity, which may cause discrepancies in the predictions.
One accurate and efficient approach, named Operator-Based
Linearization (OBL), is proven to solve the coupled problems
efficiently and accurately (Voskov, 2017; Lyu et al., 2021a).
Conventionally, the simulations require assessing physical
properties and their derivatives in relation to nonlinear vari-
ables, which is a process known for its complexity and time
consumption. However, the OBL approach introduces a novel
tactic for simplifying the calculation of nonlinear physics by
parameterizing the state-dependent properties in the physical
space either during the preprocessing process or adaptively
with a few supporting points (Khait and Voskov, 2018; Lyu
and Voskov, 2023). In the course of a simulation, the physical
properties at the current timestep are assessed using a multi-
linear interpolation method (Fig. 7). This approach enhances
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Fig. 7. Schematic description of operator parameterization and interpolation process for χ operators with a predefined OBL
resolution (modified from Voskov (2017); Lyu et al. (2021a)). ω1 to ω4 are four supporting points, and ω is the current
thermodynamic state of a given control volume at a given timestep in the simulation. (a) Operator distribution and (b)
interpolation.
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Fig. 8. Examples of data structures used by AMR codes. (a) Block-structured and (b) point-structured (modified from Cant
et al. (2022)).

the efficiency of the linearization process (Voskov, 2017). By
simplifying the assembly of the Jacobian matrix, it utilizes
partial derivatives of the physical properties with respect to
nonlinear variables, which are then directly calculated as co-
efficients in the multi-linear interpolation process. One can find
more details about the applications of the OBL approach for
multi-phase multi-component systems with gravity (Khait and
Voskov, 2018), capillarity (Lyu et al., 2021a), thermal (Wang
et al., 2020), and diffusion effects (Lyu et al., 2021c). This
approach can bridge the gap between detailed microscopic de-
scriptions and emergent macroscopic behaviors. Approximated
physics enables the exploration of a vast range of applications,
providing insights into the behavior of complex systems across
multiple levels of organization.

Nonlinear solvers address the inherent nonlinearity in the
governing equations of fluid flow and transport in porous
media. These equations, such as the Navier-Stokes equations
or the Richards equation, exhibit strong nonlinearities due
to coupling between pressure, saturation, and permeability.
Advanced nonlinear solvers are designed to handle these
complexities effectively when the classical Newton-Raphson
approach suffers from convergence issues. Adaptive Mesh
Refinement (AMR) techniques dynamically adjust the com-
putational grid to resolve fine-scale features where they are
most needed, such as near sharp fronts or interfaces in porous
media (Fig. 8). By refining the mesh adaptively, AMR methods
can achieve high resolution in critical regions while maintain-
ing coarser grids elsewhere, thus optimizing computational
resources. Nonlinear solvers combined with AMR, such as
the nonlinear multigrid-AMR methods, have demonstrated
substantial improvements in both accuracy and efficiency for
multiscale simulations (Berger and Oliger, 1984; Cusini et al.,

2018; de Hoop et al., 2021).
Domain decomposition methods partition the computa-

tional domain into smaller subdomains, solving the nonlinear
equations within each subdomain either sequentially or in
parallel. These methods, including the Schwarz alternating
method and the balancing domain decomposition by con-
straints, facilitate scalable and efficient solutions for large-
scale multiscale simulations. By addressing nonlinearity within
localized regions, domain decomposition methods can handle
complex boundary conditions and heterogeneous properties
more effectively. Another efficient technique, named Operator
splitting method, decomposes the original problem into sim-
pler sub-problems that can be solved sequentially. For instance,
the adomian decomposition method splits nonlinear Partial
Differential Equations (PDEs) into linear and nonlinear parts,
solving them iteratively. These methods are particularly useful
for handling stiff reactions and transport processes in porous
media. Nonlinear solvers applied within each sub-problem
ensure that the overall solution remains accurate and stable
(Estep et al., 2008; Lu et al., 2022; Vasilyeva, 2023).

3.3 High-performance computing and
machine-learning-assisted multiscale simulation

HPC has become an indispensable tool in modern scientific
and engineering research, enabling the solution of complex
and computationally intensive problems. HPC involves the
use of supercomputers and parallel processing techniques to
perform computations at speeds far beyond that of standard
computing systems. The ability to process vast amounts of
data and perform numerous calculations simultaneously makes
HPC crucial in multiscale simulations (Gauthier et al., 2021;
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Fig. 9. The physics-informed neural network algorithm (Karniadakis et al., 2021).

Ghassemzadeh et al., 2021). One of the primary components
of HPC is the architecture of supercomputers, which includes
thousands of interconnected processors working in parallel.
These processors can perform quadrillions of calculations per
second. For instance, the Graphics Processing Units (GPUs)
offer substantial improvements in computational speed and ef-
ficiency. GPUs are designed to handle parallel tasks efficiently,
making them particularly well-suited for the large-scale sim-
ulations and matrix operations inherent in reservoir modeling.
Studies have shown that GPUs can accelerate computational
tasks by an order of magnitude compared to CPUs, which
translates into more timely and cost-effective decision-making
processes in reservoir management (Esler et al., 2022).

Even with significant advancements in simulating mul-
tiphysics challenges through the numerical breakdown of
PDEs, integrating noisy data into current algorithms still
poses difficulties. In addition, it is intricate to address high-
dimensional issues steered by parameterized PDEs. Further-
more, addressing inverse problems that involve undiscovered
physical principles is frequently exorbitantly costly. This ne-
cessitates distinct approaches and complex codes. Machine-
learning-assisted multiscale simulation has emerged as a trans-
formative approach for analyzing multiphase flow and reactive
mass transport in porous media, e.g., CNNs (Han and Jentzen,
2017; Zha et al., 2022; Zhuang et al., 2024a). These neural
networks enhance the efficiency and accuracy of simula-
tions that span multiple scales, from atomic to macroscopic
levels, by learning patterns and predicting outcomes from
vast datasets. Recurrent neural networks, with their ability to
handle sequential data, are invaluable for simulations involving
time-dependent processes. On the other hand, CNNs excel
in analyzing spatial data, making them ideal for simulations
related to image recognition, material science, and fluid dy-
namics, where the spatial distribution of elements is crucial.
By integrating these ML models into multiscale simulations,
one can tackle complex, real-world problems more effectively,

leading to breakthroughs for multiscale phenomena (Zhuang
et al., 2024b).

Training deep neural networks often hinges on the avail-
ability of large datasets, which may not always be accessible
for specific scientific inquiries. As an alternative, these net-
works can be effectively trained by leveraging supplementary
information derived from the application of physical laws.
This innovative technique is called the PINNs, which integrate
traditional physical models with advanced ML algorithms
(Wang and Lin, 2020; Karniadakis et al., 2021). PINNs ensure
that simulations are not only data-driven but also adhere to fun-
damental physical laws, enabling more accurate and efficient
predictions of complex phenomena (Fig. 9). By capturing the
intricate behaviors and interactions within porous materials at
multiple scales, this approach significantly enhances our ability
to design and optimize energy storage processes. Recently,
Physics-Informed Kolmogorov-Arnold Networks (PIKANs)
have attracted attention due to their advantages over tradi-
tional PINNs, making them a powerful alternative for solving
complex physics-governed problems (Jacob et al., 2024; Rigas
et al., 2024; Toscano et al., 2024). The primary strength of
PIKANs lies in their architecture, which is inspired by the
Kolmogorov-Arnold representation theorem. Unlike standard
PINNs that rely on deep fully connected networks to approx-
imate solutions to differential equations, PIKANs decompose
the solution space into a hierarchical structure, enabling a
more interpretable and efficient representation of complex
functions. This decomposition reduces the number of required
parameters, leading to faster convergence and improved gen-
eralization, particularly in high-dimensional problems where
PINNs often struggle due to the curse of dimensionality.
Traditional PINNs operate as black-box models, where the
learned functions lack transparency and do not explicitly
reveal the underlying structure of the solution (Toscano et al.,
2024). PIKANs, however, leverage the Kolmogorov-Arnold
structure to provide a more modular and hierarchical break-
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Table 1. Comparison of different approaches for multiscale modeling.

Approach Advantages Limitations Potential Applications

Hybrid
multiscale
Simulation

- Captures physics across multiple scales
- Accurate representation of pore- and continuum-scale processes

- High computational cost
- Requires sophisticated coupling strategies

- Multiphase flow in porous media
- CO2 sequestration
- Hydrocarbon recovery modeling

Approximated
physics

- Reduces computational complexity
- Provides stable solutions for complex nonlinear systems

- Potential loss of physical fidelity
- May require calibration with full-physics models

- Reactive transport modeling
- Enhanced oil recovery simulations
- Large-scale reservoir modeling

HPC - Enables large-scale, high-resolution simulations
- Supports real-time data processing

- Requires significant computational resources
- Can be expensive and energy-intensive

- High-resolution energy storage simulations
- Large-scale multiphase flow modeling

ML-assisted
simulation

- Accelerates computation using surrogate models
- Can learn complex patterns from data

- Requires large training datasets
- Limited interpretability in some cases

- Data-driven reservoir modeling
- Uncertainty quantification
- CO2 and hydrogen storage forecasting

down of the target function, allowing for better physical
insight and easier identification of dominant patterns in the
learned representations. This aspect is particularly beneficial
in fields like porous media flow, subsurface transport, and
geophysical modeling, where understanding the interactions
between variables is crucial for improving predictive accu-
racy. In addition, computational efficiency is another area
where PIKANs outperform PINNs. The hierarchical nature
of PIKANs ensures that the network learns low-dimensional
representations effectively before reconstructing the full func-
tion, leading to better-conditioned optimization problems and
reducing the likelihood of vanishing or exploding gradients
that commonly hinder deep PINNs architectures. Furthermore,
PIKANs demonstrate improved robustness in handling multi-
scale problems, a domain where PINNs often require extensive
tuning of hyperparameters and network depth to capture small-
scale features. Since PIKANs break down complex mappings
into simpler sub-functions, they naturally accommodate multi-
scale structures without excessive parameterization.

Table 1 shows the comparison of different approaches
for multiscale modeling for multiphase flow and reactive
mass transport in porous media. Hybrid multiscale simulations
provide a rigorous framework for capturing physics across
multiple scales, accurately representing pore- and continuum-
scale interactions. However, their high computational cost and
the necessity for sophisticated coupling strategies make them
challenging to implement for large-scale reservoir simula-
tions. In contrast, the approximated physics approach aims
to reduce computational complexity by simplifying governing
equations while maintaining stability and accuracy. Although
these methods enhance computational efficiency, they may
sacrifice physical fidelity and often require calibration with
full-physics models to ensure reliability.

HPC has significantly expanded the capabilities of mul-
tiscale simulations by enabling high-resolution, large-scale
modeling through parallel computing and GPU acceleration.
While HPC facilitates real-time data processing and enhances
the accuracy of multiphase flow and reactive transport simula-
tions, it demands substantial computational resources, making
it costly and energy-intensive. Meanwhile, machine-learning-
assisted multiscale simulations offer a promising alternative
by leveraging surrogate models and data-driven approaches
to accelerate computations. These methods excel in pattern

recognition, uncertainty quantification, and real-time forecast-
ing but require extensive training datasets and may suffer from
limited interpretability. Ultimately, the choice of modeling ap-
proach depends on the specific application, balancing accuracy,
computational efficiency, and scalability for challenges such
as CO2 sequestration, hydrogen storage, and enhanced oil
recovery.

4. Challenges and perspectives
Although significant advancements have been made in

multiscale modeling for multiphase flow and reactive transport
in porous media, several critical challenges persist. Addressing
these issues is essential to improving model accuracy, com-
putational efficiency, and practical applicability in subsurface
energy storage and carbon sequestration.

4.1 Robust coupling techniques
A key difficulty in coupling techniques arises from the in-

herent scale separation between microscopic and macroscopic
processes. Traditional numerical methods, such as finite differ-
ence or finite element approaches, struggle to resolve fine-scale
details without significantly increasing computational expense
(Soulaine, 2024). On the other hand, upscaling techniques
like volume averaging or homogenization simplify fine-scale
processes but often fail to preserve essential microscale hetero-
geneities, leading to errors in macroscopic predictions (Zhang
et al., 2021). The complexity is further exacerbated in reactive
transport problems, where chemical reactions occurring at the
pore scale can have a significant impact on macroscopic flow
behavior. If these interactions are not accurately accounted for,
the model may fail to capture important phenomena such as
mineral precipitation, dissolution, or wettability alteration, all
of which influence the long-term performance of subsurface
energy storage systems.

In addition, the nonlinearity is introduced by multiphase
interactions, phase changes, and geochemical reactions (Cai
et al., 2024). In highly heterogeneous reservoirs, fluid flow
and reaction kinetics vary significantly across different rock
formations, requiring adaptive modeling approaches. However,
ensuring numerical stability while capturing these complex
interactions remains a major hurdle, particularly when dealing
with large-scale simulations with millions of computational
grid cells.
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To overcome these challenges, research efforts are focused
on developing more robust and efficient coupling strategies
that balance computational feasibility with model accuracy.
Hybrid multiscale simulation techniques offer a promising
solution by integrating continuum-based approaches with dis-
crete models, allowing for localized fine-scale resolution while
maintaining computational efficiency. For example, hybrid
schemes can employ pore-network models to resolve mi-
croscale interactions in specific regions of interest while using
continuum-based solvers for large-scale flow simulations. This
approach reduces computational costs while preserving critical
fine-scale details. The study by Korneev and Battiato (2016)
on the homogenization of pore-scale reactive transport models
is an example of how advanced mathematical techniques
can be used to derive effective parameters for Darcy-scale
simulations from detailed pore-scale data. In addition, the
advancement of adaptive multiscale methods, where model
resolution dynamically changes based on local conditions,
also provides one possibility to resolve these challenges. For
instance, fine-scale simulations can be triggered in regions
experiencing rapid phase transitions or chemical reactions,
while coarser grids are used in less dynamic regions. This
adaptive refinement approach ensures that computational re-
sources are allocated efficiently without sacrificing accuracy in
critical areas. Despite advancements in modeling frameworks,
bridging the gap between scales while preserving the fidelity
of the underlying physics remains an ongoing research frontier
(Blunt et al., 2013; Lasseux et al., 2016; Soulaine, 2024).

4.2 Balancing model complexity and
computational feasibility

High-fidelity models strive to capture detailed physics,
such as interfacial tension effects, pore-scale transport phe-
nomena, geochemical reactions, and phase behavior, to en-
hance predictive accuracy. However, incorporating such in-
tricate details into large-scale reservoir simulations leads to
significant computational demands, often rendering these mod-
els impractical for real-world applications. A major challenge
arises from the need to resolve fine-scale heterogeneities in
porous media, such as fractures, grain boundaries, and capil-
lary interactions, while maintaining computational efficiency
at the reservoir scale (Duran et al., 2021). Traditional fully
coupled numerical methods, including finite element and finite
volume approaches, become prohibitively expensive when
applied to large domains with high resolution. Additionally,
reactive transport processes introduce strong nonlinearities due
to coupled chemical reactions, which further increase the
computational cost by requiring small time steps and fine
spatial discretization (Abd and Abushaikha, 2021; Baqer and
Chen, 2022).

Approximated physics methods offer a way to alleviate
the computational burden by simplifying governing equations,
reducing the number of variables, or employing surrogate
models to approximate fine-scale processes. However, the
challenge lies in ensuring that these approximations do not
introduce significant errors that undermine model reliability.
Simplified reaction networks, for example, may fail to capture

critical reaction pathways that influence long-term system
behavior (Abd and Abushaikha, 2021; Ladd and Szymczak,
2021). Similarly, reduced-order models, while computationally
efficient, often struggle to generalize beyond the conditions
under which they were trained (Ardakani et al., 2024). Finding
the right balance between model simplification and physical
realism remains a key challenge in multiscale modeling. More-
over, real-world applications require models to be adaptable to
different reservoir conditions, such as variations in rock prop-
erties, fluid compositions, and operating conditions. Fixed-
resolution models may either be too computationally expensive
for large-scale simulations or too simplistic to capture essential
dynamics. Developing a modeling framework that dynamically
adjusts its complexity based on local conditions is crucial for
improving both efficiency and accuracy.

Adaptive resolution techniques, where model complexity
varies depending on local flow conditions and reaction rates,
is one possible way to achieve this goal (Liu and Zhang,
2021; Yang et al., 2021). For example, fine-scale resolution
can be selectively applied to regions experiencing rapid phase
transitions or strong chemical reactions, while coarser grids
are used in less dynamic regions. This approach significantly
reduces computational costs without sacrificing accuracy in
critical areas. Adaptive meshing techniques, such as dynamic
grid refinement and coarsening, offer a practical way to
implement this concept in large-scale simulations. Hybrid
modeling, another promising approach, combines high-fidelity
and reduced-order models in a single framework (De Santis
et al., 2021; Li and Voskov, 2021). In this strategy, detailed
physics-based models are used in regions where high accuracy
is required, while simplified surrogate models approximate
less critical areas. Hybrid multiscale methods, such as do-
main decomposition techniques, enable the seamless transition
between different levels of model complexity, ensuring com-
putational efficiency without compromising essential physical
details (Tang et al., 2021a).

4.3 Machine-learning integration
The integration of ML into multiscale modeling for subsur-

face flow and reactive transport has emerged as a powerful tool
to enhance computational efficiency and predictive accuracy.
However, several fundamental challenges must be addressed
to ensure the reliability and practical application of ML in
large-scale subsurface simulations.

One of the primary challenges is the lack of interpretability
in deep learning models. Traditional physics-based models are
built on well-established equations governing multiphase flow
and transport processes, providing transparency and explain-
ability in their predictions (Yan et al., 2022). In contrast,
ML models, especially neural networks, function as black
boxes, making it difficult to understand their decision-making
process. This opacity raises concerns regarding their appli-
cability in critical scenarios, such as reservoir management,
carbon sequestration, or groundwater remediation, where in-
correct predictions could lead to costly or even hazardous
consequences (Amini et al., 2022; Wu et al., 2023a; Jacob
et al., 2024). Meanwhile, another major obstacle is the need



256 Lyu, X., et al. Advances in Geo-Energy Research, 2025, 15(3): 245-260

for extensive and high-quality training data. ML models re-
quire large datasets covering a wide range of conditions to
generalize well to unseen scenarios. In subsurface modeling,
generating such datasets is expensive and time-consuming, as
it often involves running high-fidelity numerical simulations
or collecting real-world experimental data. Moreover, many
subsurface processes involve rare or extreme events, such as
sudden permeability changes due to mineral precipitation or
breakthrough of injected fluids, which are difficult to capture
in training datasets. Data sparsity and distribution shifts be-
tween training and real-world conditions further degrade the
predictive performance of the model (Wang et al., 2021a; Xu
et al., 2022).

Additionally, ensuring generalizability across different geo-
logical formations, fluid properties, and operational conditions
remains a significant challenge. ML models trained on a
specific set of geological features may fail to extrapolate to
reservoirs with different permeability distributions, fracture
networks, or fluid compositions. Unlike traditional numerical
solvers that incorporate governing equations applicable to a
broad range of conditions, ML-based models often struggle
with scenarios that deviate from the training distribution,
leading to unreliable predictions. Hybridizing ML with tradi-
tional physics-based approaches introduces new complexities.
While PINNs and other hybrid models aim to incorporate
fundamental physical principles into ML architectures, design-
ing such models requires balancing data-driven learning with
equation-driven constraints. Ensuring numerical stability and
convergence in these hybrid approaches is still an active area
of research.

One possible way to overcome this challenge is to develop
physics-informed and hybrid machine-learning models that
integrate prior physical knowledge into data-driven frame-
works (Zhu et al., 2022; Wu et al., 2023b). PINNs and other
constrained ML techniques enforce governing equations as
part of the learning process, reducing reliance on extensive
training data and improving generalizability. By embedding
physics-based loss functions, these models can ensure that
predictions adhere to fundamental conservation laws, enhanc-
ing their reliability in real-world applications. In this process,
we also can develop the adaptive fusion of ML models with
numerical solvers, where ML accelerates certain computa-
tionally expensive components (such as subgrid-scale physics
or iterative solvers), while traditional numerical techniques
ensure robustness and accuracy (Kochkov et al., 2021). For
example, ML can be used to rapidly approximate fine-scale
permeability fields or reaction rates, while finite-volume or
finite-element solvers handle macroscopic flow and transport
equations. This approach retains the interpretability of physics-
based models while benefiting from ML’s efficiency.

Transferring learning and domain adaptation strategies to
enhance model generalizability is also one promising way
to improve the performance of ML (Oyewole et al., 2022).
By pre-training ML models on a diverse set of simulated or
experimental datasets and fine-tuning them for specific reser-
voirs, ML-assisted simulations can become more adaptable
to varying geological conditions. Synthetic data augmentation
techniques, such as generative adversarial networks, can also

be explored to enrich training datasets and improve the robust-
ness of ML predictions. Moreover, uncertainty quantification
techniques must be incorporated into ML-assisted subsurface
models to assess the confidence level of predictions. Bayesian
neural networks and ensemble learning methods can help
quantify uncertainties, providing insights into when ML pre-
dictions are reliable and when they require correction via tradi-
tional numerical solvers (Yin et al., 2021; Abbaszadeh Shahri
et al., 2022).

5. Summary
Multiscale modeling techniques tailored for the compre-

hensive understanding of multiphase flow and reactive mass
transport phenomena within porous media are crucial for sub-
surface energy storage. Great advances have been achieved in
recent years, e.g., hybrid multiscale simulation, approximated
physics, and machine-learning-assisted multiscale simulation,
elucidating their respective merits and challenges in enhancing
both the precision and computational efficiency of model-
ing endeavors. Despite significant strides, persistent hurdles
such as the refinement of coupling methodologies, the deli-
cate equilibrium between model intricacy and computational
tractability, and the fusion of ML algorithms with physical
models are acknowledged. Consequently, prospective avenues
for surmounting these challenges, with the ultimate goal of
expanding the horizons of multiscale modeling capabilities,
are still to be resolved.
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