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Abstract:
Designing and optimizing the control schemes of geothermal energy systems is a
challenging and time-consuming work due to the vast parameter space and computationally
intensive simulations. Canonical evolutionary optimization approaches are laborious, slow
to converge, and may not provide optimal well-control scheme for geothermal energy
systems. To tackle these issues, this work reports a machine learning-guided real-time
flow control optimization for enhanced geothermal systems. This approach fully leverages
existing data throughout the optimization phase by creating multi-fidelity surrogate models,
which comprise coarse and fine models. The coarse model strategically selects a subset
of variables to develop a low-fidelity representation, while the fine model utilizes all
available variables to construct a high-fidelity surrogate. Knowledge transfer from coarse
surrogate can guide the fine surrogate search into a promising subspace. Active learning
technique is further leveraged to improve the accuracy of surrogate by iteratively querying
the most informative data points. To evaluate effectiveness of the proposed approach,
benchmark function suites and two fractured geothermal energy systems are employed
in comparison with conventional evolutionary algorithms and advanced surrogate-assisted
methods. The results illustrate the capability of the workflow to enhance the efficiency and
effectiveness of real-time decision making. This workflow paves a new path for complex
and computationally intensive design optimization problems.

1. Introduction
Enhanced Geothermal Systems (EGS) are considered as

a promising source to attain enduring and sustainable energy
for the purpose of electricity generation (Menberg et al., 2016;
Jolie et al., 2021). Heat extraction of geothermal energy from
fractured geothermal systems is challenging because the frac-
tures may cause low sweep efficiency and early breakthrough
of the injected cold water. The advancement of geothermal
energy development has faced severe challenges from both
technical and economic standpoints (Menberg et al., 2016;

Parisio et al., 2019). Numerous geothermal reservoirs have
been forsaken due to their low heat output and the associated
risks stemming from subsurface intricacies along with uncer-
tainties. Moreover, numerous EGS projects are not viable from
a commercial standpoint due to challenges like thermal break-
through, as well as fluid loss during the exploitation process.
Advanced numerical simulations that utilize methods such
as the finite element method have been extensively applied
to describe subsurface fluid flow and heat transfer behaviors
in geothermal energy systems (Li et al., 2019). Numerical
simulations serve to delineate the intricate interplay between
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subterranean fluids and rock formations, thereby enabling the
prognostication of geothermal energy distributions. Mathemat-
ical methods commonly employed for fractured porous media
encompass the equivalent porous media method (Hsieh et
al., 1985), dual-porosity method (Zimmerman et al., 1993),
and discrete fracture network method (Li et al., 2019). Con-
tinuum method treats fractures as a heterogeneous porous
medium, while discrete fracture network model explicitly
characterizes the fractures, thus enabling a more realistic sim-
ulation of fluid flow and heat transport (Hyman et al., 2019).

For geothermal energy production, accurate estimation of
subsurface fracture network distribution via inverse modelling
is a prerequisite to make further decision making (Chen et
al., 2023). Common geological monitoring methods for detect-
ing fracture distribution include are terrestrial laser scanning
(Pan et al., 2019), fractured core analysis (Ghanizadeh et
al., 2016) and seismic wave analysis (Xu et al., 2022; Jiang et
al., 2023). After reliable characterization of fracture networks,
the optimal development of the geothermal energy system can
be determined via optimization theory. Optimal development
and management of geothermal energy systems play a key role
in increasing the reservoir recovery of geothermal energy. Such
complex real-world optimization problems are conspicuous
across a multifarious array of disciplines, spanning the scien-
tific, engineering, and industrial domains (Ding et al., 2021; Li
et al., 2023a). Evolutionary algorithms including Differential
Evolution (DE) (Xue et al., 2022) have successfully spread
widely due to the promising global search capabilities and
simplicity of structure (Eiben and Smith, 2015; Zhang et
al., 2021b). In the absence of extensive prior knowledge and
the soaring dimensions of variables of the complex system,
the parameter space rises exponentially for the optimal design
(Song et al., 2022). In particular, each calculation of objec-
tive function requires computationally intensive hydrothermal
simulation, rendering an exhaustive search with evolutionary
algorithm impractical, if not unattainable.

Machine Learning (ML) has gained intensive research
and substantially advanced renewable and sustainable energy
development and a series of other scientific and industrial
problems in recent years (Sanchez-Lengeling and Aspuru-
Guzik, 2018; Sun et al., 2023; Chen et al., 2024b; Wang et
al., 2025). ML approximates the underlying mapping between
the input and the target function values in multidimensional
parameter space to replace the real calculation of high-fidelity
simulations (Xue et al., 2021; Wang et al., 2023). Many data-
driven optimization methods use ML models as surrogates,
including artificial neural networks, Gaussian processes (Fan
et al., 2019), support vector machines (Zhang et al., 2021a),
and Radial Basis Function (RBF) networks (Chen et al., 2022),
to guide the search of evolutionary algorithms. Data-driven
optimization can be divided into two types: offline surro-
gates, which build ML models using one-time samples, and
online surrogates, which build models based on Design of
Experiment (DoE) while continuously incorporating infor-
mative samples(Li et al., 2023b). Past studies have utilized
multivariate adaptive regression splines as offline surrogates to
examine the effects of geological uncertainties on optimal well
placement and control (Chen et al., 2015). Asai et al. (2018)

trained a polynomial surface regression function to explore
the sensitivity of key variables in geothermal systems. Wang
et al. (2022) used random forest as a surrogate and combined
genetic algorithm to determine the optimal geothermal well
placement in heterogeneous geothermal reservoirs. Yan et
al. (2023) combined a feed-forward neural network and non-
dominated sorting-based genetic algorithm II taking uncertain-
ties of rock properties into consideration to achieve robust
optimization. However, most existing optimization algorithms
for geothermal energy extraction mainly use offline surrogate
without further infilling of samples, resulting in relatively low
prediction accuracy and high uncertainty of the final provided
optimal solution.

Online surrogate-assisted optimization has garnered signifi-
cant attention for its remarkable efficacy in addressing intricate
and resource-intensive problems within limited computational
budget (Zhang et al., 2022; Du et al., 2023). This approach em-
ploys an active learning framework that interacts with fractured
hydrothermal simulations to enhance the surrogate iteratively
(Jin et al., 2018). New samples are queried sequentially to
uncover the optimized decision variables. Yu et al. (2018)
have proposed a surrogate-based hierarchical particle swarm
optimization to collaboratively explore and exploit the design
space using two optimizers. Deng et al. (2022) introduced a
self-directed online learning for topology optimization, where
finite element simulation is replaced by a deep neural net-
work and training samples are generated dynamically using
the prediction of the optimum of the surrogate. Despite the
significant strides made in online data-driven optimization,
the performance of these algorithms deteriorates dramatically
when solving multi-dimensional resource-intensive optimiza-
tion challenges.

In the realm of geothermal energy system design and
optimization, two main challenges are encountered (Chen et
al., 2024a): how to construct an ML model with limited
historical data to assist further decision-making efficiently
and effectively; how to iteratively infill the most informative
samples to enhance the accuracy of surrogates and accelerate
convergence. This study endeavors to surmount these chal-
lenges through the knowledge transfer between multi-fidelity
ML surrogates to enhance geothermal energy systems design.
The contributions of this research are summarized as:

1) In order to harness the full breadth of data and knowledge
within the optimization process, multi-fidelity surrogates,
specifically coarse and fine models, are developed. The
coarse model selects part variables to construct a low-
fidelity model with GRNN, while the fine surrogate
uses all variables to construct a high-fidelity model with
RBF network. The coarse surrogate focuses on capturing
the global trends of the objective function’s landscape,
whereas the fine surrogate aims to explore promising
subregions. The synergy of these multi-surrogate models
is expected to mitigate local optimums and ensure the
identification of global optimum solutions.

2) A divide-and-conquer optimization paradigm is devised,
wherein the large multidimensional problem is divided
into two groups. A coarse surrogate is established to
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capture trends in the fitness landscape. Knowledge trans-
fer from the coarse model to the fine model is then
implemented to guide the fine model search, enhancing
the exploitation of promising areas with greater accuracy.

3) Active learning techniques are utilized to improve the pre-
cision of surrogates by iteratively querying the most infor-
mative solutions within the parameter space. Considering
that relying solely on an offline surrogate without further
infilling samples may result in relatively low accuracy
of prediction and high uncertainty of the final provided
optimal solution, active learning is employed to refine
the ML model and iteratively select the most informative
samples based on informed acquisition function. This
strategy allows for more accurate ML predictions and
fewer simulation evaluations, enabling faster convergence
by orders of magnitude.

This study presents a novel demonstration of online op-
timization for geothermal energy systems through knowl-
edge transfer across multi-fidelity ML. The proposed method
significantly reduces computational time for designing and
optimizing geothermal energy systems compared to traditional
heuristic methods and surrogate-guided methods. This ad-
vancement holds great promise for addressing complex, com-
putationally intensive and practical challenges, spanning from
CO2 sequestration (Wen et al., 2023), smart grid management
(Yao et al., 2023), to mechanical metamaterials design (Bastek
and Kochmann, 2023).

2. Methods

2.1 Hydrothermal coupling and governing
equations
2.1.1 Mass balance equation

The conservation of mass in subsurface groundwater flow,
pertinent to porous and discrete fracture network media consti-
tuting geothermal reservoirs, can be meticulously articulated
through the mass balance equation as:

∂

∂ t
(ρ f φ)+∇(ρ f u) =Ψm f +Qm (1)

where t denotes time variable, ρ f indicates fluid density, φ

signifies porosity, Ψm f represents the flux transfer function
linking fractures with porous media, Qm indicates the mass
source term, and u characterizes fluid velocity, which is
mathematically defined as follows:

u =− k
µ
(∇p+ρ f g∇D) (2)

where k is permeability (the permeability the permeability
associated with fractures adheres to the cubic law k f = b2/12 ,
b represents the fracture aperture), µ signifies the viscosity, p
stands for pressure, g indicates gravitational acceleration, and
∇D is the unit directional vector aligned with the gravitational
force. The flux transfer function Ψm f is given by:

Ψm f = ∇

(
−ρ f

k
µ

∇Pb

)
(3)

where ∇Pb represents the pressure gradient within the fracture
tangent direction.

2.1.2 Energy balance equation

The energy balance equation governs both advective and
conductive heat transfer in a porous medium:

(ρ fC)e f f
∂T
∂ t

+ρ fCwum∇T −∇(λe f f ∇T ) = Em f +Qhm (4)

where C represents specific heat capacity, (ρC)e f f = φρ fCw+
(1−φ)ρsCs represents the effective heat capacity, λ refers to
thermal conductivity, λe f f = φλw +(1−φ)ρsCs describes the
effective thermal conductivity, s and w indicate the subsurface
solid and water, Em f = h(Tf −Tm) represents the heat transport
within fractures and matrix, h represents convective thermal
transport coefficient within matrix and fractures, and Qhm
denotes heat source/sink term in porous media. Heat transfer
within fractures of EGS is given by:

bρ fC f
∂T
∂ t

+bρ f u fC f ∇T T −∇T (bλ f ∇T T ) = E f m +Qh f (5)

where E f m = h(Tm −Tf ) represents the heat transport within
matrix and fractures, and Qh f represents the heat source/sink
term in fractures.

2.2 Related optimization techniques
2.2.1 Generalized regression neural network

As initially introduced by Specht (1991), Generalized Re-
gression Neural Network (GRNN) is a memory-based neural
network adept at estimating the underlying regression sur-
face. Notably diverging from the feed-forward neural network
paradigm, GRNN engenders the model in a one-pass learning
mode devoid of iterative tuning. The computationally efficient
property of GRNN makes it suitable for solving expensive
optimization problems. The architecture of GRNN includes
input layer, pattern layer, summation layer, and output layer.
The conditional mean of the output is expressed as:

E[y|x] =
∫

∞

−∞
y f (x,y)dy∫

∞

−∞
f (x,y)dy

(6)

where f (x,y) is the joint probability density function for input
x. With given data {(xi,yi)|xi ∈ Rd}, this joint probability
density function is calculated as:

f̂ (x,y) =
1

N(2π)(D+1)/2σD+1

N

∑
i=1

exp
[
− (x−xi)(x−xi)

T

2σ2

]
exp

[
− (y− yi)

2

2σ2

]
(7)

where σ is the shape parameter. Thus, the output function
value can be calculated as:

E(y|x) =

N
∑

i=1
yi exp

[
− (x−xi)(x−xi)

T

2σ2

]
N
∑

i=1
exp

[
− (x−xi)(x−xi)

T

2σ2

] (8)
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2.2.2 RBF network

RBF has gained considerable acclaim in the realm of
scientific and engineering domains owing to its remarkable
capacity to approximate the intricacies of the objective func-
tion landscape, even when armed with a limited number
of sample points. Its resilience to high dimensionality and
effectiveness in addressing complex problems make RBF an
ideal choice for this study. RBF serves as an approximation
model characterized by a weighted sum of kernel functions:

f̂ (x) =
N

∑
i=1

ωiϕ(∥x− ci∥) (9)

where ω denotes the weight coefficient, ϕ(·) is kernel
function, ∥·∥ represents Euclidean distance, and ci indi-
cates the ith center sample point. For given training set
{(x1,y1), . . . ,(xN ,yN)}, the weight coefficient can be given by:

ωωω =ΨΨΨ
−1yyy (10)

with ΨΨΨ = [ϕ(∥xi −x j∥)]N×N the kernel matrix. To accelerate
the training and avoid the overfit risks, the shape parameters
σ2 is empirically set as dismax(dn)−1/d , with dismax the
maximum distance between samples.

2.2.3 DE

DE is a robust metaheuristic algorithm well-suited for com-
plex optimization problems due to its global search capabilities
and structural simplicity. The algorithm uses a population -
based approach to maintain a set of candidate individuals
that evolve over generations through the application of evolu-
tionary operators such as mutation and crossover. The initial
population P = [x1, . . . ,xi, . . . ,xNP], i = {1, . . . ,NP},xi ∈ Rd

is randomly sampled from the parameter space [lb,ub], by
the lower and upper bounds lb, ub. Classical DE employs
three main steps: mutation, crossover, and selection. The
mutant vectors [v1, . . . ,vi, . . . ,vNP], i= {1, . . . ,NP},xi ∈Rd are
generated with the mutation operator:

vi = xbest +Mu× (xr1 −xr2) (11)
where r1 and r2 indicate sampled integers between 1 and NP
obeying uniform distribution, Mu indicates mutation factor,
and xbest represents the best individual within population.
Crossover operator then produces trial vectors via:

u j
i =

{
v j

i if rand ≤CR or j = jrand

x j
i otherwise

, j ∈ {1, . . . ,d} (12)

where u j
i denotes the jth parameter for the ith trial vector, rand

represents a sampled number between 0 and 1 obeying uniform
distribution, and CR indicates the crossover factor. The fitness
value of trial vector u is calculated and offspring is produced
via:

x′i =

{
ui i f f (ui)< f (xi)

xi otherwise
(13)

where x′i is the ith new individual of the next population.

2.2.4 Knowledge transfer in optimization

Knowledge transfer holds the potential to enrich problem-
solving capabilities, particularly within the realm of evo-
lutionary optimization (Jin, 2013; Wang et al., 2021). The
acquisition of knowledge garnered from the optimization pro-
cess, coupled with its judicious integration into evolutionary
algorithms, has demonstrably proven to be instrumental in
hastening convergence and elevating the quality of derived
optimal solutions (Yang et al., 2019). Notably, the utilization of
knowledge transfer draws upon optimal solutions derived from
analogous antecedent problems, repurposing them as shared
knowledge and integrating them into the initial population
to address the current challenge (Gupta et al., 2017; Liu
et al., 2023). Moreover, scholarly inquiries delving into the
reappropriation of knowledge from disparate problems have
been on the rise (Xue et al., 2020), with methodologies now
poised to efficiently transpose structured knowledge gleaned
from preceding tasks onto the present undertaking.

Multifactorial evolutionary algorithms (Gupta et al., 2015;
Xue et al., 2021) have surfaced as a conduit for knowl-
edge transfer among parallel tasks, engendering knowledge
exchange through the conduits of assortative mating and
vertical cultural transmission. These techniques enable the
individual tasks to not only preserve their unique knowledge
but also acquire knowledge from other tasks, fostering a
more comprehensive and enriched problem-solving approach.
Motivated by the achievements of knowledge transfer in
evolutionary computation, this work proposes the utilization
of knowledge transfer techniques to enhance the capability
of surrogates in expediting optimization. High-fidelity and
low-fidelity surrogates are constructed with historical samples
and shared knowledge during the optimization search. The
optimization performance can be further enhanced by multi-
fidelity ML models with knowledge transfer, bearing sub-
stantial significance for complex optimization entwined with
computationally intensive simulations.

3. Knowledge transfer between multi-fidelity
ML

3.1 Problem formulation
Geothermal energy system encompasses both above-

ground and subsurface infrastructure, designed to enable the
extraction of heated fluid for either generating power or
heating purposes. A thorough economic analysis is crucial for
the comprehensive investigation of an EGS, closely linked to
the results of forward hydrothermal simulations. The main goal
of optimizing heat extraction is to maximize the Net Present
Value (NPV) of the geothermal reservoir throughout the ex-
ploitation duration. With water serving as the working fluid,
the profitability associated with developing the geothermal
reservoir can be represented in terms of the net value derived
from energy production, which considers the costs related to
both water extraction and reinjection. Consequently, the design
and optimization problems of geothermal energy systems can
be mathematically represented as:
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Fig. 1. Overview of the proposed workflow. (a) Multi-fidelity coarse and fine ML models, (b) hydro-thermal numerical
simulation based on finite element method, (c) knowledge transfer between multi-fidelity surrogates and active learning to
query new samples and (d) discovery of optimal control schemes for EGS.

Algorithm 1: Pseudo code of MFSKT.
Input : Database D, population NP, number of

training samples τ , mutation factor Mu,
crossover factor CR, maximum limit of
simulation evaluations FEsmax

Output: The optimal sample xbest and database D

1 Sample τ initial solutions using LHS;
2 Calculate the objective values of the samples using

simulator;
3 FEs = τ;
4 while FEs < FEsmax do
5 Determine the coefficient r = rand([0,1]);
6 Calculate the dimension of coarse model di;
7 Select di variables with index {r1, . . . ,rdi} from the

original d variables;
8 Obtain ûsbest by conducting coarse surrogate pre -

screening; ; // Algorithm 2
9 Transfer knowledge from coarse model to fine

model by injecting ûsbest ;
10 Conduct fine surrogate search; ; // Algorithm

3
11 Generate final candidate solution x̂can;
12 Calculate the objective value of x̂can using hydro -

thermal simulation;
13 FEs = FEs+1;
14 Add the infilled solution and associated fitness

value to database D;
15 Update the current found optimal sample xbest ;
16 end
17 return

max NPV(x,z),x ∈ Rd

s.t. lb ≤ x ≤ ub
c(x)≤ 0

(14)

where lb and ub represent lower and upper boundaries of
the parameters to be optimized respectively, and c represents
the physical or operational constraints of the parameters to be
optimized. NPV is given by:

NPV(x,z) = CTEP× re −CWI× ri −CWP× rp (15)
where x represents the parameters to be determined, z de-
scribes the state parameters such as temperature and pressure,
CTEP, CWI, and CWP represent the cumulative thermal
energy production, fluid injection, and fluid production, re,
ri and rp are the price of thermal energy, the cost of fluid
injection and fluid production, respectively.

3.2 General framework of the proposed method
A Multi-fidelity Surrogate with Knowledge Transfer (MF-

SKT) is proposed for expensive optimization design prob-
lems, typically geothermal systems design. Overview of the
developed workflow is delineated in Fig. 1. Deep learning
holds powerful learning ability in predicting fluid flow and
heat transfer dynamics. However, these methods require a
large amount of training samples, making it computationally
prohibitive for such large-scale time-consuming simulation
models. When only limited simulation evaluations are avail-
able, GRNN and RBF ML methods work well for such small
sample problems. The algorithm begins with DoE using Latin
Hypercubic Sampling (LHS), followed by the construction
of multi-fidelity ML models. Knowledge transfer from low-
fidelity surrogate to high-fidelity surrogate can guide the
search into a promising subspace, thus augmenting the search
capability. Active learning is harnessed to further improve the
accuracy of the ML model through the iterative infusion of
the most informative samples within parameter space.

For one iterative loop, a coarse low-fidelity surrogate using
GRNN is constructed with a portion of randomly selected
parameters in a subspace, followed by the preselection of the
most promising individual from the candidate offspring by
the coarse surrogate. Subsequently, Knowledge transfer with
the selected individual is conducted from the coarse model to
the fine model. Evolutionary search is then conducted for the
remaining parameters with the assistance of fine surrogate. The
most promising solution is selected for simulation evaluations.
The detailed pseudo code of multi-fidelity surrogates with
knowledge transfer is elucidated in Algorithm 1.
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Algorithm 2: Pseudo-code of coarse surrogate pre-
screening.

Input : Database D, population NP, number of
training samples τ , index {r1, . . . ,rdi} of di
variables, mutation factor Mu, crossover
factor CR, the maximum limit of simulations
FEsmax

Output: The candidate solution ûsbest to be transferred

1 Reduce the database D to sub-database Ds by
extracting di variables with index {r1, . . . ,rdi};

2 Choose τ best samples as training samples from
sub-database Ds;

3 Construct coarse surrogate f̂coa using GRNN;
4 Select NP best sample points

P = {xs1 , . . . ,xsi , . . . ,xsNP} from sub-database Ds;
5 Generate offspring P′ = {us1 , . . . ,usi , . . . ,usNP} using

differential evolutionary operator;
6 Pre-screen the most promising individual ûsbest by

coarse surrogate f̂coa;

Algorithm 3: Pseudo code of fine surrogate search.
Input : Database D, number of training samples τ ,

mutation factor Mu, crossover factor CR, the
Upper limit of generations Gensmax, the
candidate solution ûsbest to be transferred

Output: The best solution x̂can

1 Choose τ best samples as training samples from
database D;

2 Construct fine surrogate f̂ f ine using RBF network;
3 Select NP best samples P = {x1, . . . ,xi, . . . ,xNP} from

database D as current population;
4 for Iters = 1 : Gensmax do
5 Conduct evolutionary operator (mutation and

crossover) to generate new offsprings;
6 Transfer knowledge ûsbest from low-fidelity

surrogate to offsprings;
7 Evaluate the fitness value of current offsprings

with fine surrogate f̂ f ine;
8 Update the population P according to the predicted

fitness value;
9 end

10 Select the most promising individual x̂can by fine
surrogate f̂ f ine;

3.3 Coarse surrogate pre-screening
According to the “divide-and-conquer” paradigm, the large

optimization problem is randomly divided into two groups
controlled by coefficient r:

dl = r×d (16)
where d is the dimension of problem, and dl is the reduced di-
mension of the coarse surrogate. After determining the dimen-
sion of the reduced problem, dl variables are randomly selected
{xr1 , . . . ,xrdl

}, and the database DDD is reduced to sub - database
DDDs by extracting dl variables with index {r1, . . . ,rdl}. Low -
fidelity coarse surrogate f̂coa is then constructed using GRNN.

The most promising solutions in the sub - database DDDs are cho-
sen as the current population P= {xs1 , . . . ,xsi , . . . ,xsNP}, where
xsi contains the variables with index {r1, . . . ,rdl}. Differential
evolutionary operators are then employed to generate offspring
P′ = {us1 , . . . ,usi , . . . ,usNP}. The most promising individual
ûsbest is prescreened by coarse surrogate f̂coa:

ûsbest = argmin
usi∈{us1 ,...,usNP}

f̂coa(usubi) (17)

The corresponding knowledge is further transferred to the
fine surrogate search. Detailed procedure for coarse surrogate
pre-screening can be found in Algorithm 2.

3.4 Fine surrogate search
High-fidelity fine surrogate f̂ f ine is constructed using RBF

network to predict the landscape of the objective. Nevertheless,
more accurate surrogate models may not better guide optimiza-
tion searches because of the existence of multiple local optima.
Approximation errors often benefit the evolutionary search
which is known as the effect of ‘blessing of uncertainty’.
Therefore, knowledge transfer from coarse model to fine
model is expected to improve the optimization search by
reducing the probability of false convergence into a local
optimum. The promising individual ûsbest provided by coarse
surrogate is injected as the transferred point. After transferring
the knowledge from the coarse model, the fine model search
is then conducted for the remaining variables, which means
the original high-dimensional parameter space is reduced into
a subspace. DE is employed as the optimizer to locate the
optimum for the sub-problem:

x̂can = argmin
xrem

f̂ f ine(usbest ,xrem) (18)

where x̂can denotes the final selected sample point to be
evaluated, and xrem represents the remaining variables except
variables with index {r1, . . . ,rdl}. The pseudo-code is de-
scribed in Algorithm 3, and detailed framework of knowledge
transfer between multi - fidelity surrogates and active learning
loop for geothermal energy system design and optimization is
shown in Fig. 2.

4. Results
In this section, benchmark problems and two real-world

geothermal energy system design problems are evaluated to
validate the efficacy of the developed algorithm. In the ex-
periments, four CEC benchmark functions are firstly tested
in comparison with recently proposed advanced surrogate-
guided algorithms, including GPEME, SACOSO, SHPSO and
ESAO. To further demonstrate the global optimality of the
developed paradigm, two real-world geothermal energy system
design problems are further investigated with the aim of
maximizing the economic gains of the geothermal system
by discovering the optimal well-control scheme. Noteworthy
parallel computing can be effectively leveraged during the
sampling stage of the DoEs. Besides, distributed sampling can
also be conducted by sampling multiple candidate samples.
The experiments are conducted in MATLAB R2021a with
Intel(R) Xeon(R) Gold 6142 CPU @ 2.59 GHz 64 GB RAM



250 Chen, G., et al. Advances in Geo-Energy Research, 2025, 16(3): 244-259

ˆ candidatex

DE optimizer

DatabaseDatabase Sub-
database

1x

2x

NPx

… …

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
1y

2y

NPy

1x

2x

NPx

… …

3x 4x 6x
1y

2y

NPy

1u

2u

NPu

… …

3x 4x 6x
1ˆly

l2ŷ
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energy system design and optimization.

Table 1. Characteristics of the benchmarks.

Function Function expression Variable range Properties

Ellipsoid
d
∑

i=1
ix2

i [−5.12,5.12]d Unimodal

Rosenbrock
d−1
∑

i=1

[
100(xi+1 − x2

i )
2 +(xi −1)2] [−2.048,2.048]d Multimodal

Ackley −20e
−0.02

√
1
d

d
∑

i=1
x2

i
− e

1
d

d
∑

i=1
cos2πxi

+20+ e [−32.768,32.768]d Multimodal

Griewank
d
∑

i=1

x2
i

4000
−∏cos

(
xi√

i

)
+1 [−600,600]d Multimodal

desktop computer.

4.1 Representative benchmark problems
To evaluate the global optimality of MFSKT, experiments

are conducted on CEC benchmark suites in comparison with
canonical evolutionary algorithm DE and advanced surrogate-
guided algorithms, GPEME (Liu et al., 2013), SA-COSO (Sun
et al., 2017), ESAO (Wang et al., 2019), and SHPSO (Yu et
al., 2018) respectively. The detailed characteristics of the four
50-dimensional benchmark suites are illustrated in Table 1.
The optimum of the benchmarks are 0, and the dimension of
four benchmarks are 50. Considering the optimization results
of evolutionary algorithms are stochastic, 20 independent runs
are conducted for all benchmark functions to achieve fair
comparison. The initial sampling number is set to 100 function
evaluations, and the stopping limit is 500 function evaluations.

To delve into the role of knowledge transfer in opti-
mization, a variant of MFSKT is introduced for comparison
purposes. In this variant, solely high-fidelity surrogate models
are leveraged to steer the evolutionary algorithm, devoid of any
knowledge transfer between multi-fidelity surrogates during
the optimization process. Fig. 3 delineates the landscapes of
the benchmark functions and the convergence curves of DE,

GPEME, SA-COSO, ESAO, SHPSO, the MFSKT variant,
and the proposed MFSKT across the four 50-dimensional
benchmark problems. In comparison with high-fidelity sur-
rogate search (i.e., MFSKT variant), multi-fidelity surrogates
search with knowledge transfer can achieve better convergence
and efficiency, showing the great contribution of knowledge
transfer. All surrogate-assisted algorithms outperform DE,
owing to the high-quality approximation provided by the
ML models, which effectively guide the evolutionary search.
Notably, while GPEME exhibits relatively lower convergence
compared to other surrogate-assisted methods, it distinguishes
itself by utilizing a surrogate model to prescreen promising
individuals in the population, rather than sampling directly
from the surrogate’s optimum. In a comprehensive evaluation,
MFSKT proves to deliver markedly superior performance
compared to existing algorithms across the 50-dimensional
benchmark problems, thus presenting a competitive and pi-
oneering simulation-involved optimization framework.

4.2 Geothermal energy system design
To substantiate the efficacy of the proposed algorithm

framework, a real-world application focused on fractured
geothermal energy systems is conducted. The detailed DFN
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Fig. 3. Benchmark landscapes and optimization result of DE, GPEME, SA-COSO, ESAO, SHPSO, MFSKT variant and the
proposed MFSKT on the 50D benchmark problems. (a) Ellipsoid, (b) rosenbrock, (c) ackley and (d) griewank.

model and well location and pattern for the geothermal reser-
voir is present in Fig. 4. The main goal is to maximize the
NPV by ascertaining the optimal well-control schemes for
the wells throughout the duration of the project. The model
contains two sets of fractures, featuring 4 injectors and five
producers. It covers an area measuring 1,000 × 1,000 m2

with 40 m thick. The specific configuration parameters for the
fractured geothermal energy system model are enumerated in
Table 2. Considering fracture works as the preferential flow,
the impact of heterogeneous strata is negligible especially
for hot dry rock with limited flow capability. The NPV over
the course of the project serves as the target for evaluating
the performance. Specifically, the original temperature is 200
◦C, while the temperature of injected fluid is 20 ◦C. The
projected lifespan extends to 12,000 days, with each time-
step set at 600 days. The producers are maintained at a
consistent bottom-hole pressure of 30 MPa. Consequently, the
primary objective revolves around ascertaining the optimal
fluid injection rates for the 4 injectors across 20 time-steps, a
total of 80 parameters to be determined. The ultimate aim is
to enhance heat extraction while circumventing uneconomical
exploitation throughout the project’s duration.

In a comprehensive comparative analysis, canonical DE
alongside three advanced surrogate-guided evolutionary com-

putation methods are chosen to validate the performance of
the developed method on the fractured geothermal reservoir.
Before the active learning process, 100 initial samples are
generated uniformly using LHS. Subsequently, 200 iterative
active learning sampling is then conducted to iteratively ex-
ploit the promising region by surrogate-assisted evolutionary
algorithms. Thus, the total number of forward simulation
calculations is 300. In light of the stochastic nature of evo-
lutionary algorithms, five independent runs are executed for
fair comparison across the five methods.

Fig. 5 presents the averaged convergence curves of various
methods (Fig. 5(a)) over 5 independent runs, alongside the cor-
responding probability density function of the sampled fitness
value (Fig. 5(b)) in the active learning process. It emerges from
the comparison that the optimization efficiency of DE is quite
slow when contrasted with the surrogate-guided evolutionary
methods. Notably, GPEME exhibits lower convergence than
other surrogate-assisted evolutionary algorithms, attributed to
utilizing a surrogate-assisted prescreening strategy, which falls
short of the efficiency exhibited by the surrogate-assisted
search strategy. SHPSO transcends SOCOSO and GPEME
in terms of its optimization capabilities, while the proposed
MFSKT not only yields superior efficiency but also excels in
optimization effectiveness. Stacked t-SNE visualizations (Fig.
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Table 2. Parameter configurations of the fractured
geothermal energy system.

Parameter Value

Original temperature (◦C) 200

Original pressure (MPa) 30

Temperature of injected fluid (◦C) 20

Bottom-hole pressure of producers (MPa) 30

Injection rate range of injectors (m3/s) [0,200]×10−3

Depth (m) 2,500

Matrix porosity (-) 0.01

Fracture porosity (-) 0.1

Matrix permeability (m2) 5×10−17

Fracture permeability (m2) 10−9

Formation thickness (m) 40

Matrix heat conductivity (W/(m·K)) 2

Fluid heat conductivity (W/(m·◦C)) 0.698

Matrix thermal capacity (J/(kg·◦C)) 850

Fluid thermal capacity (J/(kg·◦C)) 4,200

5(c)) for the evolutionary history of various methods present
the sampling history and corresponding fitness distributions.
Gray points represent the performance of initially generated
solutions by DoE method, while colored points represent the
performance of sampled solutions by various methods.

Hydrothermal simulations for the geothermal case are
conducted with the optimal well-control schemes of various
methods. Temperature distributions with optimal solutions of
various evolutionary computation methods of the geothermal
case on 3,000, 6,000 and 12,000 days are shown in Fig. 6.
Quantitative analysis and comparison for the development per-
formances of the fractured geothermal energy system with the
optimized control schemes of various evolutionary methods
are illustrated in Fig. 7. The average production temperature of
production wells shows a gradual downward trend for all five
optimized well-control schemes. As illustrated in Fig. 7(b),
the developed MFSKT can achieve a better cumulative NPV
after 12,000 days and maintain a relatively high heat extraction
rate in the project duration. The optimization scheme for the
geothermal energy system provided by MFSKT enhances the
profits by maximizing the heat extraction with improved sweep
efficiency.

Fig. 8 presents the evolution of cumulative NPV, average
temperature of produced fluids and heat extraction rate for
the decisions discovered by MFSKT during the optimization
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Fig. 6. Temperature distributions with optimal solutions of various evolutionary methods on 3,000, 6,000 and 12,000 days.
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process, respectively. The gray lines represent the performance
of initially generated well-control schemes, while the col-
ored lines represent the performance of sampled well-control
schemes by MFSKT method. The color of the line indicates
the NPV value of corresponding well-control scheme. Fig.
9 illustrates the evolution for the well-control schemes of
four wells by MFSKT method. Most initially generated well-
control schemes by DoE hold relatively low fitness value.
After iteratively infill new informative sample points via ac-
tive learning strategy based on informed acquisition function,
surrogate models are updated, and the optimization process is
converged efficiently. The method allows for more accurate
ML predictions and fewer simulation evaluations, enabling

faster convergence by orders of magnitude than canonical
evolutionary algorithms.

4.3 Large-scale geothermal system design and
optimization

A field-scale geothermal energy system is further employed
to compare the optimization efficacy between the proposed
method and peer methods. The large-scale EGS comprises
more than 1,000 fractures, organized into 3 distinct fracture
sets. Elaborate dip direction and distribution of the DFN
have been systematically modelled in adherence to the Fisher
distribution with κ = 50, as delineated in Fig. 10 and Table
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Table 3. Parameter configurations of the large-scale fractured
geothermal energy system.

Parameter Value

Original temperature (◦C) 200

Original pressure (MPa) 30

Temperature of injected fluid (◦C) 50

Bottom-hole pressure of injectors (MPa) [30,40]

Production range of producers (m3/s) [0,20]×10−3

Depth (m) 3,500

Matrix permeability (m2) 5×10−15

Fracture permeability (m2) 10−7

Formation thickness (m) 50

Matrix heat conductivity (W/(m ·K)) 2

Fluid heat conductivity (W/(m ·K)) 0.698

Matrix thermal capacity (J/(kg ·K)) 850

Fluid thermal capacity (J/(kg ·K)) 4,200

3, detailing the DFN and other parameter configurations of
the geothermal energy system. Considering fracture works
as the preferential flow, the impact of heterogeneous strata
is negligible especially for hot dry rock with limited flow
capability. The scale of the model amounts to 1000×500×50
m3, encompassing 3 injectors and five producers within the
geothermal energy system. The primary goal is the maxi-
mization of the NPV accruing from the geothermal reservoir
over the course of the project. The NPV is defined as the net
thermal extraction value minus the cost associated with fluid
production and injection. As the starting point, the large-scale
EGS registers a temperature of 200 ◦C, while the injection
water temperature stands at 50 ◦C. Notably, the projected
lifespan spans 6,000 days, with each time-step set at 300
days. The operation of the producers revolves around the fluid

production rate, whereas the injectors are governed by the
bottom-hole pressure. Hence, the overarching aim of the EGS
lies in ascertaining the decision-making for the three injectors
and five producers across 20 time-steps, amounting to a total
of 160 variables awaiting determination.

This large-scale geothermal energy system is optimized
by DE, GPEME, SACOSO, SHPSO and the proposed MF-
SKT. Due to the high dimensionality of the problem, the
initial samples are specified as 200. Afterwards, 200 iterative
active learning sampling is then conducted to iteratively ex-
ploit the promising region by surrogate-assisted evolutionary
algorithms, resulting in a total of 400 forward simulation
calculations. Fig. 11 presents the optimization results and
probability density function of the sampled objective value in
the active learning stage of DE, GPEME, SACOSO, SHPSO
and MFSKT for the fractured geothermal energy system. It is
observed that DE converges at a slower rate compared to the
surrogate-guided evolutionary methods, which leads to unsatis-
factory computational performance. Fig. 12 shows temperature
distributions with optimal decisions of DE, GPEME, SHPSO
and MFSKT for the large-scale DFN model after 1,500, 3,000
and 6,000 days. The injected cold fluid flow into the producers
through fractures as the preferential way. It is clear that DE and
GPEME achieves more geothermal heat extraction after 6,000
days. Nevertheless, they engaged in excessively uneconomic
production after thermal breakthrough, causing low NPV after
the project period. SACOSO and SHPSO hold lower thermal
sweep efficiency in comparison with MFSKT, resulting in
lower NPV after the project period. MFSKT provides a great
balance between maximizing geothermal sweep efficiency and
reducing redundant and uneconomic development.

The development performances of the fractured geothermal
system and associate quantitative analysis with the optimized
control schemes of DE, GPEME, SACOSO, SHPSO and
MFSKT are shown in Fig. 13. Although the cumulative heat
production of MFSKT is not as high as that of DE and
GPEME, MFSKT holds the highest cumulative NPV. DE and
GPEME excessively and uneconomically exploit geothermal
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Fig. 13. The exploitation performances of fractured geothermal energy system with optimized control schemes of various
evolutionary methods. (a) Average production temperature versus cumulative thermal energy production and (b) thermal energy
production rate versus cumulative NPV.

energy after thermal breakthrough, resulting in a downward
trend in cumulative NPV in the later stages of the project.
The control scheme provided by MFSKT enhances the eco-
nomic benefits of geothermal system development by delaying
geothermal heat breakthrough time, improving heat sweep ef-
ficiency, and reducing redundant production. Fig. 14 illustrates
the optimized control schemes provided by the algorithms after
400 simulation evaluations. After optimization, the proposed
algorithm achieves higher NPV by changing the flow path and
displacing the geothermal heat energy in a more economical
way.

5. Discussion
A key challenge in geothermal energy production within

EGS involves optimizing performance while accounting for
the uncertain nature of fracture distribution. Achieving robust
control strategies and mitigating development risks hinges
on this optimization. The parameters governing the fracture
distribution model are subject to uncertainty due to our limited
knowledge of subsurface fractured geothermal reservoirs. This,
in turn, introduces uncertainty into geothermal prediction.
Decision-making under such conditions of uncertain fracture
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Fig. 14. Final optimal pressure schemes of 8 producers by DE, GPEME, SACOSO, SHPSO and MFSKT for the large-scale
geothermal system.

distribution is computationally demanding, as each evaluation
of the objective function necessitates multiple simulations.
Therefore, further in-depth investigation is required to de-
termine how to leverage surrogate models to decrease the
number of computationally expensive simulation calculations
and implement optimal design across multiple simulation
models to effectively learn the relationships between different
fracture network realizations.

Beyond heat extraction challenges, the optimization work-
flow presented here holds promise for application in a va-
riety of energy systems, particularly those optimization de-
sign problems that rely heavily on simulation. The proposed
optimization framework offers the potential for efficient and
robust optimization across computationally intensive complex
systems. How to make full use of the power of generative
artificial intelligence for estimation of subsurface fracture net-
work distribution. In future work, generative diffusion models
will be used for fracture inference conditioned on observed
data to reduce geological uncertainty.

6. Conclusions
In this article, multi-fidelity ML enhanced evolutionary

algorithm assisted by knowledge transfer between models is
proposed towards heat extraction optimization for fractured
geothermal energy systems. The proposed algorithm takes
advantage of the data and knowledge by constructing multi-
fidelity surrogates, i.e., coarse and fine surrogates, during the
optimization process. The coarse model selects some variables
randomly to construct a low-fidelity surrogate model, while
the fine surrogate uses all variables to construct a high-fidelity
surrogate model. Knowledge transfer from coarse surrogate is
developed to guide the fine surrogate search into a promising
subspace. Active learning is leveraged to refine the accuracy
of the ML model by iteratively infusing the most enlightening
samples within the parameter space.

Comparative experiments are rigorously performed on
benchmark function suites and two real-world EGS in com-
parison with traditional evolutionary algorithm and advanced
surrogate-guided evolutionary methods. After a comprehen-
sive assessment, results demonstrate the efficiency and the

effectiveness of the introduced workflow to enhance the real-
time decision making of the introduced workflow. Notably,
the method substantially diminishes the computational time
required for designing geothermal energy systems by mul-
tiple orders of magnitude when contrasted with canonical
heuristic methods. This work opens doors for accelerated
design of fractured EGS and presents promising implications
for addressing complex, computationally intensive real-world
challenges, including smart grid management, and mechanical
metamaterials design.
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