Supplementary file

Molecular insights into two-phase flow in clay nanopores during gas hydrate

recovery: Wettability-induced multiple pathways of water lock formation

Bin Fang^{1,2}, Zhun Zhang³, Qian Zhang¹, Guangjun Guo^{4,*}, Jianwen Jiang⁵, Fulong Ning^{3,*}

¹ School of Marine Science and Engineering, Hainan University, Haikou 570228, P. R. China

² Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Wuhan 430074, P. R. China

³ Faculty of Engineering, China University of Geosciences, Wuhan 430074, P. R. China

⁴ Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, P. R. China

⁵ Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore

E-mail address: fangbin126@cug.edu.cn (B. Fang); 20121003712@cug.edu.cn (Z. Zhang);

qian.zhang@hainanu.edu.cn (Q. Zhang); guogj@mail.igcas.ac.cn (G. Guo); chejj@nus.edu.sg (J. Jiang);

nflzx@cug.edu.cn (F. Ning).

* Corresponding author (ORCID: 0000-0003-4822-3863 (Guangjun Guo); 0000-0003-1236-586X (Fulong

Ning))

Fang, B., Zhang, Z., Zhang, Q., Guo, G., Jiang, J., Ning, F. Molecular insights into two-phase flow in clay nanopores during gas hydrate recovery: Wettability-induced multiple pathways of water lock formation. Advances in Geo-Energy Research, 2025, 17(1): 17-29.

The link to this file is: https://doi.org/10.46690/ager.2025.07.02

S_w	Molecule type —	Molecule number		
		NPss	NPgg	NPsg
0	CH4	439	442	449
0.1	CH4	359	375	428
	H ₂ O	484	484	484
0.2	CH4	347	354	364
	H2O	875	875	875
0.3	CH4	281	292	316
	H ₂ O	1230	1230	1230
0.4	CH4	250	239	284
	H ₂ O	1488	1488	1488
0.5	CH4	181	209	198
	H ₂ O	1887	1887	1887
1.0	H ₂ O	3280	3280	3280

Table S1. The number of molecules in each simulation system at different water saturation in pore

Table S2. Parameters for the flexible SPC water model (Amira et al., 2004), OPLS-UA methane (Martin and Siepmann, 1998), and the CLAYFF force field (Cygan et al., 2004). σ and ε are the Lennard-Jones parameters, in units of nm and kJ/mol, respectively; q is the partial charge of an atom in units of elementary charge (e); m is the atomic mass in units of g/mol

8				
atom	ε (kJ/mol)	σ (Å)	<i>q</i> (e)	<i>m</i> (g/mol)
H ₂ O				
0	0.65	3.16552	-0.82	16.0
Н	0	0	0.41	1.008
CH4	1.23	0.373	0	16.0
Kaolinite				
Al	1.3298×10^{-6}	4.2713	1.575	26.98
Si	1.8402×10^{-6}	3.3020	2.1	28.055
O ^b	0.1554	3.1655	-1.050	15.994
O^{h}	0.1554	3.1655	-0.950	15.994
Н	0	0	0.425	1.008

Fig. S1. The system energy profiles as a function of simulation time for different water saturation levels

References

- Amira, S., Spångberg, D., Hermansson, K. Derivation and evaluation of a flexible SPC model for liquid water. Chemical Physics, 2004, 303(3): 327-334.
- Cygan, R. T., Liang, J. J., Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 2004, 108(4): 1255-1266.
- Martin, M. G., Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. Journal of Physical Chemistry B, 1998, 102(14): 2569-2577.