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Abstract:

The accurate evaluation of hydraulic fracturing performance is essential for the iterative
optimization of unconventional reservoir development. In this aspect, fracturing pressure
diagnostics has been recognized as a non-invasive technique that significantly reduces
operational time and cost. However, pressure-based diagnostics lack a unified workflow
for the evaluation of fracture complexity and area and cannot provide sufficient guidance
for design optimization. Thus, this paper proposes an integrated diagnostic framework,
constructed by pressure interpretation and data mining, from which the hydraulic fracture
complexity and fracture area can be quantified. The normalized fracture complexity index
is defined by propagation events and energy intensity extracted from wavelet-transformed
pressure signals, and the fracture area is evaluated from pressure falloff analysis. Data
mining is then used to optimize the fracturing parameters based on these two indices.
The results show that the proposed framework effectively characterizes the stimulated
fracture area and complexity and reveals their relationships with fracturing parameters and
geological factors on the basis of multi-stage data from three horizontal coalbed methane
wells. The stimulated fracture area is primarily determined by the fracturing fluid volume
and pumping rate, while the fracture complexity is strongly regulated by the pumping rate
and compressive strength of the rock. A negative correlation was detected between the
fracture complexity and the main fracture area. To balance the main area and complexity
of fractures, it is necessary to optimize the key fracturing parameters. This study provides
a low-cost tool that can diagnose hydraulic fracturing performance and effectively optimize
unconventional completion.

1. Introduction

Hydraulic fracturing diagnostics for fracture geometry,

ing downhole video and acoustic imaging (McCormack et
al., 2021; Eyinla et al., 2023), near-wellbore monitoring with
distributed fiber-optic sensing (Ekechukwu and Sharma, 2021;

complexity and conductivity are vital to iteratively optimize
fracturing parameters for unconventional oil and gas comple-
tion (Zoback and Kohli, 2019; Li et al., 2022b; Akbari et
al., 2025). Currently, fracture diagnostic technologies can be
categorized into four groups: Downhole monitoring includ-

Nayak et al., 2024), far-field surveillance including controlled-
source electromagnetic monitoring and micro-seismic (Nayak
et al.,, 2024), and pressure-based analyses. By contrast,
pressure-based diagnostics have emerged as a practical, non-
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invasive and cost-effective alternative with strong scalability
(Lei et al., 2020; Parisio et al., 2021; Childers and Wu, 2022).
Pressure signals, which can be continuously recorded at the
wellhead without extra hardware, inherently reflect the fracture
propagation and closure behaviors, providing an efficient path-
way to evaluate stimulation effectiveness in unconventional
reservoirs (Liu and Ehlig-Economides, 2018; Cui et al., 2023;
Wei et al., 2025).

Representative pressure-based diagnostics mainly include
pressure falloff analysis, water-hammer diagnostics and real-
time injection interpretation. In pressure falloff analysis,
Nolte’s G-function model has been widely used to estimate
closure pressure and fluid leak-off (Nolte, 1979). Its applica-
tions have been extended to unconventional reservoirs with
complex fracture interactions (Eltaleb et al., 2025), as well as
to multi-well systems with fracture networks (Ren et al., 2019).
Further developments that incorporate fracture compliance and
proppant transport enable improved evaluations of effective
fracture geometry and conductivity (Afagwu et al., 2022; Wei
et al., 2024). Water-hammer diagnostics utilize high-frequency
oscillations after shutdown to infer the fracture entry and
impedance, with cepstral analysis enhancing the identification
of cluster efficiency (Hu et al., 2023a; Wang et al., 2025). Real-
time injection diagnostics extend Nolte’s log-log framework
to account for heterogeneous formations and stress-sensitive
effects (Nguyen et al., 2020; Hazlett et al., 2021). Recent
advances in sensors allow high-frequency wellhead monitoring
up to 1,000 Hz with 0.001 MPa resolution, enabling the
detection of subtle oscillations, reflections and closure signals.
Hybrid approaches that integrate pressure with distributed
acoustic sensing, as well as microseismic and electromagnetic
imaging further improve interpretation (Hudson et al., 2021;
Liu et al.,, 2021). However, pressure-based methods remain
confined to single-phase interpretations, and there is still a
lack of a systematic pressure-analysis framework that would
integrate mini-frac, main injection and falloff data, thus en-
abling the simultaneous evaluation of fracture complexity and
stimulated fracture area while establishing robust quantitative
links with fracturing completion parameters.

Effective completion optimization relies on linking the
monitoring results with fracturing parameters and geological
factors (Tripoppoom et al., 2020; Zhang et al., 2022). Such
integration provides the foundation for evaluating treatment ef-
fectiveness and guiding iterative parameter adjustments across
different stages. At the same time, geological factors, including
fracture complexity and geomechanical responses, introduce
significant uncertainty into fracture interpretation (Wang et
al., 2024; Sun et al., 2025), often leading to non-unique solu-
tions (Li et al., 2022a; Pei and Sepehrnoori, 2022; Ishibashi
et al., 2023). These challenges highlight the necessity of de-
veloping diagnostic frameworks that not only capture fracture
geometry and stimulated area using monitoring data but also
incorporate geological constraints (Manjunath et al., 2023; Liu
et al., 2024). Current diagnostic practices, however, remain
fragmented, with pressure-based, microseismic, and fiber-optic
methods often applied in isolation, lacking unified work-
flows for cross-validation. To reduce the interpretational non-
uniqueness, it is essential to integrate mini-frac, main injection

197

T
I
|
I
|
|
|
1
I

T
|
1
]
)
! 9
I
;

Fig. 1. Schematic framework of fracture diagnostics and
optimization in unconventional reservoirs.

and post-fracturing pressure falloff analyses into a systematic
pressure-based framework, enabling multi-scale diagnosis and
verification, thereby establishing more reliable links between
diagnostic outcomes and completion optimization.

In order to address the above issues, this paper proposes
a unified fracturing diagnostic framework based on fluid
pressure signal interpretation and data mining. By incorpo-
rating pressure data from the mini-frac test, main fracturing,
and post-fracturing pressure falloff, the framework enables
the quantitative evaluation of fracture complexity and stimu-
lated fracture area. The normalized fracture complexity index
(NFCI) is defined from pressure responses to characterize
dynamic fracture propagation, while the stimulated fracture
area is obtained through pressure falloff analysis. Data mining
is further employed to correlate these diagnostic indices with
the fracturing completion parameters, thereby providing opti-
mization strategies under various geological conditions. The
proposed framework, validated on three horizontal coalbed
methane wells from the Junggar Basin, provides a low-cost,
efficient tool for diagnosing hydraulic fracturing performance
and guiding unconventional completion optimization.

2. Methodology

This section presents a structured methodology for diag-
nosing post-fracturing behavior and optimizing stimulation pa-
rameters in unconventional reservoirs. Pressure curves, which
are readily available during hydraulic fracturing operations,
capture the integrated response of the wellbore, formation
and fractures. The key to fracture diagnostics is to extract
diagnostic features from these signals while minimizing the
interference of rate-dependent friction. The proposed work-
flow incorporates pressure data from the mini-fracture, main
injection, and falloff stages in an integrated manner. Fracture
complexity is characterized by continuous wavelet transform
(CWT) of corrected injection pressure signals, while fracture
area is estimated from falloff pressure decline through inver-
sion analysis. These results are then correlated with geological
and operational parameters to identify the dominant control-
ling factors and provide guidance for data-driven stimulation
optimization. To visually illustrate the overall idea, Fig. 1
presents a schematic framework of fracture diagnostics and
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Fig. 2. Workflow of pressure-based NFCI diagnostics.

optimization in the development of unconventional resources.

2.1 Diagnosis of fracture complexity based on
injection pressure

The diagnosis of fracture complexity is based on pressure
and rate data during the main fracturing stage, in which
the step-down test plays a critical role. During fracturing
operations, wellhead pressure is jointly influenced by the
injection rate, frictional losses, and the fracture propagation
state. Variations in the injection rate can cause abrupt changes
in frictional pressure, thereby introducing interference into
fracture diagnostics. The step-down test is designed to es-
tablish a dynamic relationship between injection rate and
system friction. Frictional losses are composed of wellbore
friction, perforation friction, and near-wellbore friction. As
shown in Eq. (1), the combined wellbore and perforation
friction is typically modeled as a quadratic function of rate,
while near-wellbore friction is represented as proportional to
the square root of rate. By performing a step-wise reduction
in rate, multiple stable pressure points under different flow
conditions can be obtained. Fitting these data points to Eq.
(1) yields the friction coefficients K; and K5, which define the
rate-dependent frictional behavior of the system (Mondal et
al., 2021):

P(R) = K1Q* + K,0"7 (1)
where P(R) represents the rate-dependent frictional pressure,
MPa; Q represents the injection rate, m3/min; K represents
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the quadratic coefficient representing wellbore and perforation
friction, MPa-(min/m>)?; and K, represents the near-wellbore
friction coefficient, MPa-(min/m3)0'5.

Once the friction coefficients are determined, the instan-
taneous pressure contribution attributed solely to fracture
behavior can be calculated using Eq. (2) by subtracting the
rate-induced frictional pressure from the measured wellhead
pressure. This corrected pressure is denoted as P;. Through
this procedure, the interference caused by rate variations
is effectively removed using data from the step-down test,
allowing Py, to better represent the actual fracture propagation
response (Mondal et al., 2021):

Py(t) = B(1) — K1 Q(1)* = K20(1)* 2
where P;(t) represents the measured wellhead pressure at
time ¢, MPa; P,(t) represents the corrected pressure excluding
frictional losses, MPa; and Q(¢) is the instantaneous injection
rate, m3/min.

In order to capture dynamic features related to fracture
propagation, the corrected pressure signal P; is further pro-
cessed using the CWT. As shown in Fig. 2, high-frequency
components, particularly in the 0.3-0.5 Hz range, have been
widely recognized as markers of transient fracture phenom-
ena such as tip advancement, sudden branching and fracture
interactions (Unal et al., 2019). These relationships have
been validated through both numerical simulations and field
observations (Hu et al., 2022).

In order to improve the characterization of such instabili-
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ties, the NFCI is proposed. This index accounts for both the
intensity and persistence of high-frequency pressure fluctua-
tions while normalizing for the injection scale. Specifically,
the CWT is used to compute the time-frequency energy
distribution of P; from which the average spectral energy
in the 0.3-0.5 Hz band is extracted at each time step. A
dynamic activation threshold is defined as 1.5 times the mean
energy level over the entire injection period. In this study, the
CWT is implemented using the Morlet mother wavelet (morl).
The corrected pressure signal is uniformly resampled, and the
analysis focuses on the 0.3-0.5 Hz frequency band, which is
most sensitive to transient fracture activities.

The time intervals where the spectral energy exceeds this
threshold are identified as high-frequency activation periods.
Then, the cumulative energy exceeding the threshold within
these intervals is integrated and normalized by the mean
energy level and the total injected fluid volume, yielding the
final NFCI value. In other words, the NFCI incorporates the
intensity (spectral energy), persistence (activation duration),
and scale effect (injection volume) of high-frequency pressure
fluctuations, ensuring comparability across different stages and
wells. This approach provides a more physically representative
indicator of unstable fracture growth, enhancing sensitivity
to both signal amplitude and duration. The full formulation
is given in Eq. (3). Physically, NFCI reflects the degree to
which a reservoir responds to injected energy through unstable
fracture growth, including branching, tip advancement and
fracture interactions, while highlighting the intrinsic dynamic
sensitivity of the fracture system to stimulation:

Nf_v/{ tfeF)[(E(t,feF)>aEm)]}dt 3)

where Ny represents the NFCI, dimensionless; E (t,f €F)
represents the spectral energy at time ¢ within the frequency
band F, MPa’-s; E, represents the mean spectral energy
during injection, MPa?-s; a represents the threshold multiplier,
dimensionless, 1.5; I represents the indicator function for
activation, d1mens1onless V; represents the total injected fluid
volume, m3; and T represents the total injection time of a
single fracturmg stage, s.

2.2 Diagnosis of fracture area based on pressure
falloff analysis

The diagnosis of fracture area is carried out from the shut-
in pressure falloff curve after hydraulic fracturing, which pro-
vides insights into fluid leak-off behavior and fracture geom-
etry. Conventional G-function-based methods assume planar
fractures and Carter-type leak-off during the entire shut-in
period. However, in actual reservoirs, abnormal responses such
as water hammer, wellbore storage, or early fracture closure
often occur, causing deviations from the ideal assumption and
leading to significant overestimation of the fracture area.

In order to improve robustness, an enhanced falloff analysis
method is employed (Wei et al., 2024). The key step is the use
of CWT to decompose the falloff signal and identify the nearly
pure leak-off phase, in which the pressure decline is mainly
controlled by leak-off with minimal interference from other
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effects. The CWT is expressed as (Wei et al., 2024):

wan=it [rov()a @

where Wy represents the coefficient of the wavelet function,
MPa-s; f(¢) represents the analyzed signal (here: Corrected
pressure signal Py), MPa; y represents the Morlet mother
wavelet; R represents the integration domain, dimensionless; a
represents the expansion factor that can affect the shape of the
wavelet, dimensionless; and b represents the translation factor
that affects the phase of the wavelet, dimensionless.

Within this interval, the G-function derivative is used
to link pressure decline with fracture area (Liu and Ehlig-
Economides, 2019):

dP  7CL\/T;(Am+Ap) 5)
dG  2(cpAm+ciAy)
where dP/dG represents the derivative of pressure with respect
to G-function time, MPa; Cy represents the leak-off coefficient,
m/min®>; 7, represents the time from fracture initiation to
pump shutdown, min; A,, and A, represent the areas of main
and secondary fractures, m?; and ¢,,, ¢, are their respective
compliances, m/MPa.
In addition, the material balance relationship, which rep-
resents the balance of fracturing fluid volume, is expressed as
(Liu and Ehlig-Economides, 2019; Wei et al., 2024):

V :CmAm(PS*Pm)“i’CnAn(PY*Pn)‘F
! (6)
2r,Crn/tp + At (A +As)g0

where V), represents the equivalent injected volume per stag,
m?; P; represents the instantaneous shut-in pressure, MPa; P,
and P, represent the closure pressures of main and secondary
fractures, MPa; r, represents the ratio of leak-off height,
dimensionless; At represents the leak-off correction time, min;
and g, is the G-function constant, dimensionless.

By solving Egs. (5) and (6) simultaneously, the areas of
main and secondary fractures can be determined. The mechan-
ical parameters involved in these equations, such as fracture
closure pressures and compliances, are typically obtained from
mini-frac tests or laboratory rock mechanics experiments, in
order to ensure that the inversion results have a reliable
physical basis. More importantly, the main fracture area can
be separated, which represents the wide fractures that are most
likely to be propped. For clarity, in the following sections, the
sum of A, and A,, is collectively referred to as the stimulated
fracture area, while A,, is denoted as the main fracture area.
Compared with conventional methods, this approach improves
the robustness of falloff interpretation by filtering out abnormal
responses through CWT, making it a more practical parameter
for evaluating fracturing effectiveness. The workflow of frac-
ture area estimation from falloff analysis is illustrated in Fig.
3.

2.3 Correlation analysis and optimization of
completion
In order to identify the dominant controls of fracture

morphology and support data-driven stimulation optimization,
a correlation analysis is performed between geological and
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Table 1. Classification of parameters used in the correlation analysis.

Geological

Engineering

Fracture evaluation results

Average mechanical specific energy
Variance in MSE
Breakdown pressure

Instantaneous shut-in pressure

Total fluid volume
Sand ratio
Average injection rate

Stage length

Stimulated fracture area
Main fracture area
Average fracture width

NFCI

engineering parameters and fracture diagnostics results. The
objectives are twofold: First, to quantify the influence of both
engineering and geological factors on fracture complexity and
stimulated fracture area; second, to extract optimized param-
eter combinations or design recommendations for different
geological settings, thereby providing guidance for stage-level
optimization in future completions. A total of 12 variables are
included in the analysis and grouped into three categories: Ge-
ological parameters, engineering design variables, and fracture
response indicators, as illustrated in Table 1.

Several parameters in this analysis are not directly mea-
surable but derived from multi-source field data. For example,
mechanical specific energy (MSE) is employed as a composite
indicator of rock strength and fracability, essentially reflecting
the confining compressive strength of the rock. In this study, a
corrected bottomhole mechanical specific energy is applied to
account for drillstring friction, torque loss, compound rotary-
motor drilling, and jet-assisted rock breaking. This corrected
mechanical specific energy can more accurately reflect the
actual rock-breaking energy at the bit and capture small-scale
heterogeneity in formation strength along the lateral. Stage-
level variance in MSE is further used to represent geological
variability within individual stages, and its expression is (Hu
et al., 2023b):

We 1207'CN;,T1, T]APth (7)
Ap ApV, ApV,

where M, represents the corrected bottomhole mechanical
specific energy, MPa; W, represents the effective weight on

M, =

bit, kN; A; represents the bit area, m?: N, represents the
corrected rotary speed, rev/min; 7, represents the corrected
torque, KN-m; V, represents the penetration rate, m/h; AP,
represents the pressure drop across the bit, MPa; Q) represents
the flow rate at the bit, m*/min; and 7 represents the hydraulic
efficiency factor, dimensionless.

In order to evaluate the relationships between inputs and
outputs, Spearman rank correlation is employed to quantify
the monotonic associations between geological/engineering
parameters and fracture-response indicators. The Spearman
coefficient is defined as the Pearson correlation of the rank
variables, which does not require normal distribution assump-
tions and is therefore more robust under field data conditions
(Dewinter et al., 2016):

(Rei—Ry) (Ryi—Ry)

Xl_R \/Z Vi 7\)

For tie-free data an equivalent closed form is (Dewinter et
al., 2016):

IIM:

Ps = (8)

n
6Y d?
po=1- ﬁ di=Ry;— Ry, )
where p; represents the Spearman rank correlation coefficient,
dimensionless; n represents the sample size, R,; represents
the rank of the i-th observation of variable X, Ry; represents
the rank of the i-th observation of variable Y, R, represents
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Table 2. Main fracturing parameters of wells A-C.

Average stage Average cluster

Clusters per

Injection rate Proppant intensity

Well  Stages length (m) spacing (m) stage Fluid system (m3 /min) (m3 /m)
A 22 63.0 18.8 3-4 High-viscosity 20 2.6

B 21 42.5 20.7 High-viscosity 12 1.84

C 15 60.4 19.6 4 Variable-viscosity 20 3.9

the mean rank of variable X, Rj represents the mean rank
of variable Y, and d; is the difference in ranks of the i-th
observation.

The resulting Spearman correlation matrix identifies key
drivers with significant influence on the fracture complexity
and stimulated fracture area under field data conditions (which
need not be normally distributed). Furthermore, stages with
favorable outcomes are statistically grouped based on fracture
performance, allowing the extraction of optimized parameter
ranges for given geological conditions. Building on these
findings, geology-based classification is introduced in the next
section to enable the application of stage-specific optimization
strategies under varying geological conditions.

3. Results and analysis

This study presents a case study of 3 hydraulically frac-
tured wells in a typical coalbed methane reservoir of the
Junggar Basin, Xinjiang, China. A total of 58 fracturing
stages were analyzed, covering varied geological settings and
treatment designs. Pressure curve interpretation and fracture
inversion were used to evaluate the fracture morphology, with
representative stages examined in detail and a geology-based
classification proposed for parameter recommendations.

3.1 Overview of the application wells

This study investigates three horizontal wells, referred to as
Well A, Well B and Well C, that were completed with multi-
stage hydraulic fracturing. The wells differ primarily in their
stage/cluster configurations, fracturing fluid systems, injection
schedules, and proppant intensities. A summary of the main
operational parameters is provided in Table 2.

Wells A, B and C were completed with distinct stage/clus-
ter designs and fluid programs. Well A comprised 22 stages
with 3-4 clusters per stage; the average stage length and mean
cluster spacing were 63.0 m and 18.8 m, respectively. A high-
viscosity fluid system was pumped at 20 m>/min, and the
proppant intensity was 2.6 m3/m. Well B comprised 21 stages
with 2 clusters per stage; the average stage length was 42.5
m and the mean cluster spacing was 20.7 m; a high-viscosity
fluid system was used at 12 m?/min, and the proppant intensity
was 1.84 m?/m. Well C comprised 15 stages with 4 clusters
per stage; the average stage length and mean cluster spacing
were 60.4 m and 19.6 m; a variable-viscosity fluid system
was pumped at 20 m*/min, and the proppant intensity was 3.9
m3/m.

These operational contrasts, particularly in fluid type, in-
jection rate and proppant intensity, provide a sound basis for

evaluating fracture geometry and treatment effectiveness in the
following sections.

3.2 Fracture parameter interpretation

On the basis of pressure curve interpretation, the frac-
ture morphology and stimulation responses were quantified
for three hydraulically fractured wells. Eight key indicators
were derived for each of the 58 stages, including stimulated
fracture area, main fracture area, average fracture width, NFCI,
mechanical specific energy, variance of mechanical specific
energy per stage, total fluid volume, and sand ratio (Fig.
4). Well A showed stimulated fracture areas ranging from
1.9 x 10° to 6.4 x 10° m? with an average of 3.8 x 10° m?,
and main fracture areas from 8.1 x 10* to 2.6 x 10> m? with
an average of 1.5 x 10° m”. The average fracture width ranged
between 0.9 and 4.0 mm, while NFCI values varied between
0.044 and 0.118. Well B had stimulated fracture areas of
7.7 x 10*-6.1 x 103 m? and main fracture areas of 4.1 x 10%-
3.5 x 10° m?. The fracture width was in the range of 0.6-2.8
mm, and NFCI values were 0.038-0.110. Well C exhibited
stimulated fracture areas of 1.1 x 10°-3.1 x 10° m? and main
fracture areas of 7.1 x 10%-1.4 x 10° m?. The fracture width
ranged from 0.23 to 3.5 mm, while NFCI values were between
0.049 and 0.135.

In terms of average diagnostic parameters, the stimulated
fracture area followed the order A > B > C, while the
main fracture area followed B > A > C. Average fracture
width was highest in Well A, with Wells B and C showing
similar but smaller values. NFCI was ranked C > A > B,
indicating that Well C experienced the most complex fracture
networks, whereas Well B remained the simplest. These trends
are consistent with the completion designs: The lower injection
rate in Well B limited fracture width but favored stable planar
growth, the higher injection rate and variable-viscosity system
in Well C promoted branching and complexity, while Well
A represents an intermediate case with wider fractures but
moderate proppant effectiveness.

In order to illustrate the diagnostic workflow and under-
lying fracture propagation mechanisms, three representative
stages were selected: A high-complexity stage (Case 1, Well
C-Stage 2), a stage with the best proppant effectiveness (Case
2, Well B-Stage 14), and a wide-fracture stage (Case 3,
Well A-Stage 20). These stages were chosen to cover the
extreme and typical responses observed in the dataset, thereby
providing the most illustrative examples of contrasting fracture
behaviors. Each example integrates the corrected pressure
response, CWT high-frequency energy distribution, and falloff
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analysis. (Figs. 5-7).

Case 1: High-complexity stage. The corrected pressure
exhibits rapid oscillations, while the CWT spectrum reveals
strong bursts of high-frequency energy, indicative of secondary
microfracture activation and frequent branching. The falloff
response departs from a linear trend and the G-function
derivative curve shows multiple inflection points, consistent
with the non-uniform fracture closure behavior (Fig. 5). The
inversion results indicate a stimulated fracture area of 305,876
m2, a main fracture area of 90,957 m2, and an average fracture
width of 0.98 mm, with a NFCI of 0.134. Mechanistically, this
stage is dominated by a branched fracture network with fine-
scale apertures, providing complex connectivity.

Case 2: Best proppant effectiveness. The CWT spectrum
exhibits distinct fluctuations, reflecting multiple fracture ini-
tiations. The G-function superposed derivative shows two
closures, which is simpler in form compared with Case 1,
representing a moderately complex fracture network (Fig.
6). Inversion confirmed that this stage achieved the largest
stimulated and main fracture areas among the three cases: A
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stimulated fracture area of 607,194 m?2, main fracture area
of 351,660 m2, an average fracture width of 1.37 mm, and
a NFCI of 0.067. Overall, the fracture system at this stage
is relatively large in scale and structurally stable, providing
favorable conditions for uniform proppant placement, thereby
achieving the most effective proppant utilization among the
three cases.

Case 3: Wide-fracture stage. The corrected pressure curve
remains relatively stable, and the CWT spectrum is domi-
nated by low-frequency components with weak high-frequency
signals, indicating a relatively simple fracture morphology
dominated by planar fractures with limited branching. The
falloff response is smooth and the G-function superposed
derivative exhibits a simple form, reflecting a single planar-
fracture morphology (Fig. 7). The inversion results show a
stimulated fracture area of 260,001 m?, a main fracture area of
189,411 m?2, an average fracture width of 3.96 mm, and a NFCI
of 0.047. Overall, this stage is characterized by a more regular
and large-scale planar fracture structure, with little evidence of
complex branching. Such morphology ensures a wide fracture
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aperture but also reflects limited fracture-network complexity.

3.3 Validation of the proposed method using

FDEM

In order to validate the reliability of pressure-derived frac-
ture parameters, three-dimensional fracture propagation was
simulated using the finite-discrete element method (FDEM).
A stratified model of 120 m x 30 m x 30 m was constructed,
consisting of roof, coal seam, interlayer, and floor (Fig. 8).
Certain geomechanical parameters including elastic modulus,
Poisson’s ratio, tensile strength, and fracture energies were
assigned to each layer based on core and log data (Table 3).

According to the inversion results, Well B had the largest
average main fracture areas (1.7 x 10° m?), Well C showed the
highest NFCI (0.098) and the narrowest average fracture width

(1.6 mm), while Well A displayed intermediate values with
wider apertures (2.2 mm) but moderately higher complexity
(0.088). Fig. 9 statistically compares the pressure-derived
parameters among the three wells.

120 m

Fig. 8. Stratigraphic model used for fracture simulation, con-
sisting of roof, coal beds, interlayer, and floor.

Table 3. Basic geomechanical parameters of the formation.

Laver Elastic modulus Poisson’s Tensile strength Mode I fracture Mode II fracture Cohesion
Y (GPa) ratio (MPa) energy (N/m) energy (N/m) (MPa)
Roof 16 0.2 2.5 140 1,400 20
Coal 2.5 0.32 1 60 600 3.4
Interlayer 12 0.25 2 120 1,200 12
Floor 16 0.2 2.5 140 1,400 20
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Table 4. Summary of FDEM-simulated fracture morphology statistics.

Well Fracturing fluid type Fracture morphology Tensile/Shear/Mixed fracture ratio (%)
A High-viscosity Combination of main and branch fractures 19.6/70/10.4
B High-viscosity Dominated by main fractures 12.5/76/11.5
C Variable-viscosity Dominated by branch fractures 20.5/68/11.5

Subsequently, FDEM simulations were conducted under
representative pumping conditions. The simulated fracture
propagation patterns for the three wells are shown in Fig.
10. Well B exhibited predominantly planar fractures with the
largest average stimulated fracture area, consistent with its
large main fracture area from inversion. In contrast, Well C
developed more branched fractures with a higher proportion
of tensile failures, in line with its higher NFCI values. Well
A showed intermediate characteristics with a mixture of main
and branched fractures. To further quantify the fracture charac-
teristics, fracture morphology statistics were derived from the
FDEM simulations (Table 4). Well A developed a combination
of main and branch fractures, with tensile/shear/mixed fail-
ure ratios of 19.6%/70%/10.4%, consistent with its moderate
NFCI and wider apertures. Well B was dominated by planar
fractures, with ratios of 12.5%/76%/11.5%, in agreement with
its large main fracture area and lowest NFCI. Well C produced
branched fracture networks with the highest tensile proportion
(20.5%/68%/11.5%), consistent with its highest NFCI and
narrowest widths.

Overall, the FDEM simulations reproduced the same inter-
well trends observed from pressure-based inversion: Wells
with greater main fracture areas corresponded to planar frac-
tures, while wells with higher NFCI were associated with
more branched fractures and limited conductivity. This consis-
tency demonstrates that the diagnostic framework is not only
mathematically distinguishable but also mechanically plausible
under realistic geological constraints, thereby enhancing the
reliability of the proposed methodology.

3.4 Controlling factors and parameter
recommendations

In order to identify the key geological and engineering
factors controlling fracture morphology, parameters of drilling,
logging and fracturing operation were collected from three
wells, and a correlation analysis was conducted using the frac-
ture inversion results from 58 stages. In this study, Spearman’s
rank correlation coefficients were employed to evaluate the
relationships between fracture parameters and geological/eng-
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Fig. 11. Spearman’s correlation matrix showing monotonic
relationships. p < 0.05 is marked with asterisks.

ineering parameters. The Spearman correlation matrix high-
lights the monotonic relationships between fracture diagnostics
and geological/operational parameters, with significant corre-
lations indicated by asterisks (Figs. 11 and 12). For clarity,
all parameters in the figure are denoted by the abbreviations
defined in Table 1. The correlation analysis indicates that
larger fluid volumes are significantly associated with greater
stimulated and main fracture areas, confirming that sufficient
fluid supply is critical for maximizing stimulated reservoir
volume. In contrast, excessively high average injection rates
tend to increase fracture complexity and reduce overall frac-
ture width, suggesting that overly aggressive pumping may
promote narrower and more irregular fractures.

During hydraulic fracturing, the variation in fracture area
with the injected fluid volume is an important aspect to be
considered. The stimulated fracture area exhibits a strong
positive correlation with the total fluid volume, indicating
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that greater fluid input generally promotes fracture extension
in the formation (Fig. 13(a)). In contrast, the relationship
between main fracture area and total fluid volume follows
a nonlinear trend, showing a diminishing increase with fluid
volume (Fig. 13(b)). A clear inflection point appears at ap-
proximately 1,680 m?, beyond which additional fluid con-
tributes little to further growth of the main fracture area. This
suggests that although higher fluid volumes facilitate fracture
creation, proppant placement efficiency may decline beyond
this threshold. When analyzing the link between fracture area
and fracture complexity, different trends are observed. The

stimulated fracture area shows a weak positive correlation with
the NFCI (Fig. 13(a)), implying that larger fracture networks
can provide more branching and intersections. However, the
main fracture area exhibits a clear negative correlation with
fracture complexity (Fig. 13(d)). This reflects a fundamental
fracture propagation mechanism: As fractures become more
complex with increased branching and secondary fracture de-
velopment, the continuity and openness of proppant-supported
channels decrease, reducing the effective main fracture area.
This highlights the trade-off between fracture complexity and
proppant effectiveness, which is critical for balancing fracture
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Fig. 14. Relationships between mechanical specific energy and fracture parameters: (a) Stimulated fracture area, (b) main

fracture area, (c) average fracture width, and (d) NFCIL.

conductivity and stimulated reservoir volume.

The analysis was further extended beyond operational
parameters to incorporate geological conditions. The absolute
value of MSE can be used to characterize the mechanical
strength of the rock in the fractured interval. The MSE
exhibits varying relationships with the fracture morphology
parameters (Fig. 14). Both the stimulated fracture area and
the main fracture area show an overall decreasing tendency
with increasing MSE, although the scatter is considerable,
suggesting that lower MSE generally favors larger fracture
dimensions. The average fracture width does not display a
strong correlation with MSE, while several high-MSE points
correspond to wider fractures, implying that fracture apertures
may increase under certain high-MSE conditions. The NFCI
remains relatively scattered with only a slight decreasing
trend as MSE increases, indicating that fracture complexity
is not strongly sensitive to MSE. These results suggest that
while MSE provides useful information about the fracture
propagation efficiency, its control on specific fracture attributes
is subject to large variability, and additional geological and
operational factors must also be considered.

The variance in MSE along the length of the fracturing
stage represents the heterogeneity of the formation. Likewise,
the variance in mechanical specific energy exhibits meaningful
relationships with fracture morphology (Fig. 15): A higher

variance in mechanical specific energy corresponds to smaller
main fracture area, indicating that unstable energy conditions
are unfavorable for large-scale fracture propagation. Similarly,
the average fracture width shows a decreasing trend with
increasing mechanical specific energy variance, suggesting that
unstable energy input suppresses the formation of wide frac-
tures. In contrast, the NFCI increases with a larger mechanical
specific energy variance, implying that fluctuations in energy
conditions tend to promote irregular fracture propagation paths
and enhance fracture complexity. These results highlight that
apart from the absolute value of mechanical specific energy, its
stability also plays a critical role in shaping fracture geometry.
Building on these findings, mechanical specific energy was
further applied as a practical criterion to classify fracturing
stages and derive parameter recommendations. In this dataset,
the midpoint of the mechanical specific energy values across
the 58 analyzed stages is approximately 70, which provides a
natural separation of the data. On this basis, MSE = 70 was
adopted as a geological boundary to recommend optimized
operational strategies for two different geological conditions
(Table 5).

In low-MSE intervals, treatment parameters should empha-
size fracture width enlargement while maintaining network
connectivity. The recommended strategies include the use
of higher-viscosity fluids, controlled pumping schedules to
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Table 5. Parameter recommendations according to the MSE-based classification.

MSE class Recommended strategy

Parameter adjustments

Enhance width while maintaining

Low MSE (< 70) complexity and area

Promote complexity while

High MSE (= 70) maintaining conductivity

High-viscosity fluids; controlled rate schedule; early
introduction of medium-to-large mesh proppant;
moderate tail-in increment (+15%-20%)

Slickwater or low-viscosity fluids; pumping rate
+10%; +1 cluster or spacing -10%; diversion with
2-3 slugs; delayed introduction of heavy proppant

reduce near-wellbore tortuosity, early introduction of medium-
to-large mesh proppant, and moderate tail-in proppant in-
crement (+15%-20%). Meanwhile, in high-MSE intervals,
treatment parameters should focus on promoting fracture com-
plexity without compromising aperture. The recommended
strategies include the use of slickwater or low-viscosity fluids,
a 10%-15% increase in pumping rate, tighter stage spacing
or additional clusters, diversion with 2-3 slugs per stage,
delayed introduction of heavy proppant, and modest tail-sand
increment (+10%). Thus, the geological conditions can be
systematically linked with engineering optimization through
stage classification.

4. Discussion

4.1 Practical advantages of the proposed method

The method proposed in this study demonstrates practical
advantages owing to the integration of injection- and falloft-
based diagnostics into a unified framework. Specifically,
injection-derived NFCI captures fracture complexity in near
real time, while falloff analysis provides estimates of fracture
area. Applied together, the two phases yield complementary
insights and converge on consistent interpretations. In Case 1
(Well C, Stage 2), strong oscillations in the injection spec-
trum produced a high NFCI (0.134), and the falloff-derived
G-function curve displayed multiple closure behavior, both
indicating branched fractures. In contrast, Case 3 (Well A,
Stage 20) exhibited relatively smoother injection responses
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Table 6. Comparison of the proposed framework with representative diagnostic methods.

Methods Main outputs

Advantages

Limitations

Fracture complexity;

Proposed framework .
P stimulated fracture area;

Closure pressure; qualitative

G-function :
complexity

Perforation efficiency;

Water-hammer .
near-wellbore tortuosity

Fracture extent; stimulated
reservoir volume

Microseismic/Fiber/
Electromagnetic

Low cost; Real-time
complexity analysis

Mature and low-cost method

Effective for near-wellbore

Spatial mapping of fracture
network

Dependent on pressure signal
quality

Post-treatment only

Lacks far-field fracture
information

High cost and complex
logistics

with a low NFCI (0.047), while the falloff analysis confirmed
wide planar fractures, with a main fracture area of 189,411
m”. These examples illustrate that fracture complexity and
geometry can be jointly constrained by combining injection
and falloff diagnostics, thereby reducing interpretational non-
uniqueness.

Beyond the complementary constraints from main-frac and
post-fracturing pressure falloff diagnostics, the reliability of
this framework was independently validated through three-
dimensional finite-discrete element method simulations. The
simulated fracture morphologies reproduced the same inter-
well trends inferred from pressure inversion: Well B developed
predominantly planar fractures with the largest main fracture
area, Well C generated branched networks with the highest
NFCI and narrowest widths, and Well A exhibited intermediate
behavior with wider apertures. These consistencies demon-
strate that the pressure-derived NFCI and fracture area are not
only mathematically consistent but also mechanically plausible
under realistic geological constraints, thereby validating the
robustness of the proposed method.

This framework is further contextualized among exist-
ing diagnostic methods (Maxwell, 2014; Wu et al., 2021;
Anikiev et al., 2023; You et al., 2025). By contrast, the
integrated pressure-based approach derives NFCI and fracture
area directly from routine wellhead data without additional
hardware, enabling the joint evaluation of injection and falloff
phases and timely stage-by-stage feedback for multi-stage
fracturing. Nonetheless, NFCI and fracture area are best suited
for relative comparisons within the same reservoir and fluid
system, while cross-reservoir applications require recalibration
to local geological and operational conditions (Table 6).

4.2 Balance between complexity and main
fracture area

The correlation results provide quantitative evidence of the
trade-off between fracture complexity and the main fracture
area. While complexity enhances the reservoir contact by
promoting branching and lateral extension, effective fracture
conductivity and production potential rely on maintaining a
sufficient main fracture area to sustain fluid transport. Thus,
the trade-off essentially reflects the competition between cre-
ating complex fracture networks and preserving continuous
proppant-supported channels. Lower mechanical specific en-

ergy values are associated with larger stimulated fracture areas
and higher complexity indices but smaller main fracture areas
(Figs. 13-15). This indicates that under low-MSE conditions,
fracture propagation tends to generate extensive branched net-
works, which increase stimulated reservoir volume but reduce
the continuity of proppant-supported fractures. In contrast,
higher MSE values correspond to lower complexity indices but
larger main fracture areas, reflecting the dominance of more
planar fractures that provide stable proppant placement and
sustained conductivity, albeit with reduced reservoir coverage.

The above duality highlights a fundamental design chal-
lenge: Maximizing reservoir contact through complexity while
avoiding the loss of effective main fracture area. Our cor-
relation analysis further demonstrated that the complexity
index is negatively correlated with the main fracture area,
quantitatively confirming this competition. These findings sug-
gest that neither fracture complexity nor main fracture area
alone determines fracturing effectiveness; instead, a balance
between the two must be sought to optimize stimulation
outcomes. From a design perspective, this trade-off implies
that stimulation strategies should pursue sufficient complexity
to enhance reservoir contact, while they should simultaneously
ensure adequate main fracture area to maintain conductivity
and long-term production.

4.3 Geology-based classification for fracturing
optimization

Our correlation analysis demonstrated that fracture mor-
phology systematically varies with geological conditions. In-
tervals with favorable conditions for branching tend to de-
velop extensive and complex networks but are constrained
by smaller apertures, whereas intervals with more resistant
formations tend to generate fewer but wider planar fractures
with reduced complexity. This contrast reflects two competing
regimes of fracture propagation, fundamentally governed by
rock strength, stress state, and natural fabric.

Building on this principle, the geological characteristics
provide a practical basis for classifying fracturing stages and
tailoring design strategies. In intervals prone to high complex-
ity, the priority is to enlarge fracture width while preserving
network connectivity. The recommended approaches include:

(1) Using higher-viscosity or hybrid fluids to enlarge aper-
ture;
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(i) Applying moderated injection schedules to reduce pre-
mature branching;

(iii)) Lowering cluster density to concentrate energy;

(iv) increasing tail-in proppant loading to support branched
geometries.

In more resistant intervals, the objective is to enhance com-
plexity and reservoir contact without compromising aperture.
The prevalent strategies include:

(1) Employing slickwater or low-viscosity fluids to stimulate
secondary fractures;
(i) Rraising pumping rates to increase dynamic energy;
(iii) Reducing stage spacing or adding perforation clusters;
(iv) Applying controlled diversion to activate additional path-
ways.

Looking forward, expanding the database to include multi-
well and multi-reservoir information will allow the application
of big-data and machine-learning approaches, further refining
geology-based classification. Moreover, the proposed NFCI
metric can be extended to real-time calculation, enabling the
continuous assessment of fracture complexity during opera-
tions and supporting the real-time optimization of stimulation
parameters.

5. Conclusions

This paper proposes an integrated pressure-based diagnos-
tic framework that links fracture diagnostics with stimulation
design. After applying this framework to 58 fracturing stages
from three horizontal coalbed methane wells in the Junggar
Basin, the main findings are as follows:

1) The stimulated fracture area per stage is primarily gov-
erned by the injected fluid volume and average injection
rate, whereas the main fracture area and NFCI are signifi-
cantly affected by the injection rate and geological factors
represented by mechanical specific energy.

2) A significant negative correlation exists between the
main fracture area and NFCI, indicating that fracturing
parameter optimization must balance fracture complexity
with the main fracture area.

3) Fracturing stages with greater MSE variance and lower
average MSE are associated with the development of
more complex fracture networks, whereas stages with
smaller variance and higher MSE tend to produce simpler
fracture geometries.

4) Fracturing parameter optimization in fracturing design
should take stage-specific geological conditions into con-
sideration.
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