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Abstract:
Distributed fiber optic temperature sensing provides significant advantages for produc-
tion monitoring in complex geological environments due to its high precision, real-
time capability, and long-term stability. However, its expanding application generates
increasingly complex temperature datasets that challenge conventional production profile
interpretation methods. To address these challenges, in this study, the researchers devel-
oped an intelligent interpretation framework to combine physically constrained forward
modeling with data-driven machine learning techniques. A forward model of wellbore
temperature profiles was established based on the fundamental principles of momentum
conservation, energy conservation, and two-phase flow dynamics. Sensitivity analysis was
used to identify key controlling factors, including production rate, geothermal gradient,
reservoir thickness, crude oil heat capacity, and crude oil density, which were then
used to generate representative training datasets. Three neural network architectures,
including a fully connected neural network, a radial basis function network, and a back
propagation network, were systematically trained and compared. The fully connected neural
network demonstrated superior prediction accuracy and generalization capability, offering
a robust tool for production profiling. Field validation using actual distributed fiber optic
temperature-sensing monitoring data from commingled production wells confirmed the
method’s practical effectiveness, with predicted production rates strongly agreeing with
the measured values across multiple reservoir layers. The proposed framework provides
a reliable, efficient solution for interpreting the production profiles of multilayer wells
under single-phase flow conditions. This study establishes a foundational methodology that
can be extended to more complex multiphase flow scenarios in future research, thereby
contributing to intelligent and automated reservoir management.

1. Introduction
Distributed temperature sensing (DTS) is widely employed

in oilfields for production profile monitoring due to its high-
precision, real-time capabilities (Denney, 2010). Although it

has been increasingly applied to various downhole scenar-
ios (Ekechukwu and Sharma, 2021), accurate interpretation
of complex temperature data remains challenging (Lu et
al., 2023), which has motivated researchers to continue devel-
oping predictive models for wellbore temperature distribution.
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Significant research efforts have been directed toward
developing temperature prediction models to support produc-
tion profile interpretation. Early models rooted in thermo-
dynamic principles have progressively evolved from steady-
state to more sophisticated transient and coupled models
(Sagar et al., 1991; Hasan et al., 2005, 2009; Wei et
al., 2022). These models incorporate factors such as wellbore
trajectories, geothermal gradients, and reservoir microthermal
processes to improve the physical representation of down-
hole thermal behavior. Building on this foundation, Alan et
al. (2024) proposed a coupled reservoir-wellbore model to
predict temperature behavior in single-phase, homogeneous,
single-layer reservoirs. Concurrently, researchers focusing on
water-flooding development, such as Gan et al. (2024) and
Shi et al. (2025), identified key factors that influence reser-
voir temperature and pressure, although they confined their
studies to single-layer scenarios. Notably, Wei et al. (2024)
achieved advances by investigating two-phase flow production
profile prediction for multilayer commingled gas wells using
DTS data, taking an important step toward more realistic
production condition modeling. Nevertheless, such physics-
based approaches often have high computational costs and
limited efficiency when applied to large-scale, high-resolution
DTS datasets acquired under actual field operating conditions.

In recent years, machine learning has emerged as a promis-
ing approach for interpreting production profiles generated
from temperature logs (Matinkia et al., 2023; Jia et al., 2024;
Obi et al., 2024; Hui et al., 2025), with significant research ef-
forts initially dedicated to enhancing DTS data quality through
noise reduction, resolution improvement, and range expansion
monitoring algorithms (Christos et al., 2023; Hayden and
Sharma, 2024; Kokhanovskiy et al., 2025). Although these
advances substantially improved data acquisition, they simul-
taneously generated vast volumes of complex temperature
data that defied manual interpretation, consequently driving
the development of machine-learning-assisted interpretation
methods. Artificial neural networks, support vector regression,
and random forests have proven successful in identifying
flow patterns and estimating phase flow rates under controlled
conditions (Shaban and Tavoularis, 2014; Mustafa et al., 2016;
Wang et al., 2022; Zhou et al., 2023). However, most ex-
isting data-driven approaches remain constrained to single-
layer production scenarios and fail to adequately represent
the commingled production complexity in multilayer wells.
Moreover, operational variability in field environments leads
to irregular data that complicate the identification of dominant
controlling factors and ultimately limit prediction accuracy.

In view of these limitations, this article introduces a
novel method for interpreting wellbore production temperature
profiles based on reservoir and wellbore thermodynamics. The
proposed model combines conservation laws with seepage
dynamics and incorporates key thermal processes to derive
characteristic input parameters for sample generation. The
researchers employed a combination of back propagation (BP),
radial basis function (RBF), and fully connected neural net-
work (FCNN) methods for training and prediction using these
datasets. A comprehensive comparison of the three network
architectures confirmed a highly effective production profiling

approach. Unlike purely data-driven methods, the proposed
framework embeds physical constraints into the machine-
learning process, ensuring that every input-output pair pre-
sented to the neural network remains inherently consistent
with underlying physical laws. This design prevents the neural
network method from encountering physically implausible
data during training, thereby enhancing prediction accuracy
and robustness. This research provides a theoretical basis for
the interpretation of DTS under single-phase flow conditions
and establishes a foundation for extending to more complex
scenarios.

2. Method and model
In this study, the researchers selected and compared three

neural network algorithms to handle complex DTS data and
meet practical field requirements. The BP network algorithm
was chosen for its structural simplicity and stable training
process, which made it particularly suitable for scenarios
involving limited data (Ding et al., 2011). The RBF network
algorithm has strong local approximation capabilities, making
it ideal for capturing nonlinear temperature distributions (Cer-
vantes et al., 2020). The FCNN network algorithm offers struc-
tural flexibility and facilitates the straightforward integration of
physical constraints (Azimi et al., 2018). The researchers sys-
tematically evaluated these classical but functionally distinct
architectures to assess their applicability to physically con-
strained temperature-output mapping under actual monitoring
conditions (Schmidhuber, 2015).

2.1 Neural network method
2.1.1 FCNN

FCNN is classic neural network structures widely used to
solve various regression and classification problems. FCNN
can effectively extract features from input data and learn po-
tential patterns in data through optimization processes (Kai et
al., 2020). For example, they can analyze large-scale multiwell
data to capture common trends and differences in production
across wells, thereby improving the prediction accuracy of pro-
duction profiles. This capability provides optimized dynamic
forecasting and production scheduling solutions for oil and gas
field development.

The fundamental architecture of an FCNN comprises an
input layer, several hidden layers, and an output layer. The
input layer receives the raw data, with the subsequent layers
employing nonlinear activation functions to map the input into
a new feature space. Ultimately, the output layer generates the
final prediction results.

The core feature of an FCNN is that the neurons in each
layer are fully connected to the neurons in the previous layer,
allowing the network to handle complex nonlinear relation-
ships. If the input data is denoted as X =(x1,x2, . . . ,xn) , where
n represents the feature dimension, the output at each layer can
be expressed as follows (Goodfellow et al., 2016):

h(l) = f
(

W (l)h(l−1)+b(l)
)

(1)

where f is the activation function; l is the number of hidden
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layers in an FCNN; l = (1,2, . . . ,n); n is the total number of
layers in the network; h(l) is the output of the l-th layer; W (l) is
the weight matrix of the l-th layer, representing the connection
strength of inputs to that layer; and b(l) is the bias term.

Input data pass through the layers to generate the final
prediction output. However, the predicted values from the
network generally differ from the true values, requiring the
use of BP to compute the errors in each layer and update the
gradients. Starting from the output layer, the error for each
layer is computed as follows (Goodfellow et al., 2016):

δ
(l) =

∂DF

∂ ŷi
f ′
(

h(l)
)

(2)

where f ′(h(l)) is the derivative of the activation function with
respect to its input, representing the gradient of the activation
function in that layer; DF is the loss function; and ŷi is
the predicted value of the model. For the hidden layers, the
error δ (l) can be recursively calculated using the chain rule
(Alpaydin, 2020):

δ
(l) =W (l+1)

δ
(l+1) f ′

(
h(l+1)

)
(3)

where W (l+1) is the weight matrix in the l+1 layer, δ (l+1) is
the error in the l +1 layer, and f ′(h(l+1)) is the derivative of
the activation function in the l +1 layer.

Once the errors have been computed, the weights are up-
dated using gradient descent. Assuming the learning rate is η ,
the weight update formula W is as follows (Alpaydin, 2020):

W (l+1) =W (l)−η
∂DF

∂W (l)
(4)

where the gradient formula is:

∂DF

∂W (l)
= δ

(l)h(l−1) (5)

Since the aim of this study was to enhance multilayer pro-
duction profile prediction and better capture the probabilistic
characteristics of the output, the researchers used a Gaussian
likelihood function as the loss function for training (Zhang et
al., 2018):

DF =−
N

∑
i=1

log
{

1√
2πσ2

exp
[
− (ŷi − yi)

2

2σ2

]}
(6)

where yi is the actual value, and σ2 is the variance of the
prediction error.

Using the Gaussian likelihood function as the loss function
for BP resulted in the optimization of the network to achieve
optimal parameter values. The training and prediction process
for the network model is illustrated in Fig. 1, and the flowchart
of the FCNN model is shown in Fig. 2.

2.1.2 RBF neural network method

RBF neural networks are feed-forward architectures char-
acterized by three-layer structures and localized approximation
properties (Ma et al., 2024). The input layer interfaces with
external data through the source nodes, while a single hidden
layer performs nonlinear transformations. A linear output layer
subsequently generates predictions based on activations prop-
agated from hidden units (Kumar et al., 2025). The training

process relies on a dual optimization strategy: Linear weights
between the hidden and output layers are updated through
efficient linear optimization, while hidden-layer parameters
governing activation functions undergo nonlinear adjustment.
Hidden units construct a set of basic functions that span the
transformed feature space when input vectors are projected
into the hidden layer. These functions, typically implemented
as Gaussian functions, provide the foundational mechanism
for the network’s approximation capability.

2.1.3 BP neural network method

BP networks are neural networks that calculate output
values and then work backward through the networks to
compute the corresponding input values (Wang et al., 2016).
Errors are calculated by comparing the back-calculated input
values with the original inputs. If an error exceeds a specified
threshold, the connection weights are adjusted and recalculated
until the error meets the desired criteria. This method is
particularly valuable because it addresses the difficulty of
determining hidden layer parameters. The BP neural network
is a multilayer feedforward neural network.

2.1.4 Effect evaluation index

Following the BP process, the errors between the network
outputs and the actual targets had to be calculated. The error
values could then be used to evaluate the model’s perfor-
mance. In this study, the mean absolute error (MAE), root
mean squared error (RMSE), and coefficient of determination
(R2) were computed for the BP neural network, RBF neural
network, and FCNN to compare the optimization results and
prediction accuracy of the three models (Milan et al., 2015),
as follows:

MAE =
1
m

m

∑
i=1

|yi − ŷi| (7)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (8)

R2 = 1−
∑
i
(ŷi − yi)

2

∑
i
(ȳi − yi)

2 (9)

where m is the number of samples, and ȳi is the mean value.

2.2 Production layer temperature model
Next, the researchers simplified the oil flow conditions

by focusing on single-phase flow to establish a clear mech-
anistic thermodynamic model for wellbore heat transfer and
to validate its reliability. In this model, strong nonlinear
coupling effects introduced by phase change, gas-liquid slip,
and complex flow patterns were not considered, which allowed
the researchers to concentrate on elucidating the fundamental
mechanisms of heat conduction and convective heat transfer
between the wellbore and the formation.

Based on this, a wellbore temperature distribution predic-
tion model was developed to determine the temperature profile
along the wellbore. The forward model was based on the
principles of mass and energy conservation. Fig. 3 shows the
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dynamic movement of the fluid. The flow process comprises
two distinct stages: 1) The flow of formation fluid toward the
wellbore and 2) the flow of fluid upwards within the wellbore.

Using a well segment as an example, the researchers
considered a small region within the wellbore with a length
of dl, located at the front of a reservoir block. The energy
accumulation equation is as follows:

dE
dt

= Ein −Eout (10)

where E is the total energy in the wellbore, Ein is the energy
entering the segment, Eout is the energy exiting the segment,
and t is the time.

The energy concentration per unit of mass is as follows:

e = u+
1
2

v2 +gdl (11)

where e is the specific energy, u is the internal energy, v is the
kinetic energy term, g is the gravitational acceleration, and dl
is a small region within the wellbore with a length of dl.

For a producing well, the energy flowing into the segment
(Ein) can be further subdivided into three segments: The
energy carried by the fluid entering the downhole pipeline
(qs−), the energy carried by the formation fluid (qis), and the
thermal energy transmitted from the reservoir. By combining
the concept of energy concentration with expansion work, the
energy balance can be further expanded as follows:

dE
dt

= qs−ρs−es−+qisρiseis −qsρses

+D∆T +qs−Ps−−qsPs

(12)

where qs− is the mass flow rate in the lower part of the
discrete segment, ρs− is the fluid density in the lower part
of the discrete segment, es− is the specific energy in the lower
part of the discrete segment, qis is the mass flow rate in the
middle part of the discrete segment, ρis is the fluid density
in the middle part of the discrete segment, eis is the specific
energy in the middle part of the discrete segment, qs is the
mass flow rate in the upper part of the discrete segment, ρs is
the fluid density in the upper part of the discrete segment, es is
the specific energy in the upper part of the discrete segment, D
is the coefficient of heat conduction, T is the temperature, Ps−
is the pressure in the lower part of the discrete segment, and
Ps is the pressure in the upper part of the discrete segment.

The definition of enthalpy is as follows:

h = u+
P
ρ

(13)

where h is the thermal enthalpy, P is the pressure, and ρ is
the fluid density.

Combined with the above, the energy balance for a certain
segment of the wellbore can be expressed as follows:

dE
dt

= qs−ρs−

[
hs−+

1
2

(
qs−

Aρs−

)2

+gdl

]
+qisρis

[
hs f +

1
2

(
qs f

Aρs f

)2

+gdl

]
−qsρs

[
hs +

1
2

(
qs

Aρs

)2
]
+D∆T (14)

where hs− is the thermal enthalpy in the lower part of the
discrete segment, A is the wellbore area, hs f is the thermal
enthalpy of sand, qs f is the mass flow rate of sand, ρs f is the
fluid density of sand, and hs is the thermal enthalpy of discrete
segments of sand.

According to the general energy balance equation, under

steady-state flow conditions, the vertical thermal conductivity
coefficient could be eliminated to obtain the energy balance
equations for the wellbore and reservoir under different con-
ditions, as follows:

Wellbore energy balance equation E1:

E1 = qs−ρs−

[
hs−+

1
2

(
qs−

Aρs−

)2

+gdl

]
+qisρis

[
hs f +

1
2

(
qis

Aρs f

)2

+g
dl
2

]
−qsρs

[
hs +

1
2

(
qs

Aρs

)2
]
+Dwb

(
Ts f − T̄s

)
= 0

(15)

where Dwb is the wellbore thermal conductivity, Ts f is the tem-
perature of the sand surface, and T̄s is the average temperature
of the sand surface.

Reservoir energy balance equation E2:

E2 = qisρis

[
hs f +

1
2

(
qs f

Aρs f

)2

−hres

]
+Dwb

(
Ts f − T̄s

)
+Dres

(
Ts f −Tgeo

)
= 0

(16)
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Table 1. Production interval of well X.

Layer Production interval (m) Permeability (mD)

1 2,219-2,224 430

2 2,232-2,239 160

where Dres is the reservoir thermal conductivity, Tgeo is the
formation temperature, and hres is the reservoir thermal en-
thalpy.

For each well unit, the energy balance (E1) includes
convective heat flux (the internal, kinetic, and potential energy
transferred by the fluid movement from the lower section to
the upper section and the reservoir), as well as the convective
heat flux between the wellbore surface and the unit itself. The
energy balance (E2) for each well unit includes convective heat
flux (the internal, kinetic, and potential energy transferred by
the fluid movement from the lower section to the upper section
and the reservoir), as well as the convective heat flux between
the wellbore surface and the unit, and between the wellbore
surface and the reservoir.

Heat loss coefficient:

Dres =
2πλ ∗

resdL

ln
re

rw

(17)

Dwb = 2πUdLrw (18)
where λ ∗

res is the characteristic viscosity loss coefficient, U is
the overall heat transfer coefficient of the wellbore, dL is the
length of the oil pipe, re is the outer radius, and rw is the inner
radius.

The expression of U in Eq. (18) is as follows:

1
U

=
rto

kt
ln

rto

rti
+

rto

kann
ln

rci

rto
+

rto

kc
ln

rco

rci
+

rto

kcem
ln

rw

rco

+
rto

rci(hc +hv)

(19)

where rto is the outer diameter of the oil pipe, rti is the
inner diameter of the oil pipe, rco is the outer diameter of
the casing, rci is the inner diameter of the casing, kt is the
thermal conductivity of the oil pipe, kann is the annular layer
thermal conductivity, kc is the thermal conductivity of the
casing, kcem is the thermal conductivity of the drilling mud,
hc is the natural convection heat transfer coefficient, and hr is
the thermal radiation.

Substituting Eq. (19) into Eq. (18), Dwb can be written as
follows:

Dwb = dL
(

1
2πkt

ln
rto

rti
+

1
2πkann

ln
rci

rto
+

1
2πkc

ln
rco

rci

+
1

2πkcem
ln

rw

rco

)−1

=
D(1)

wb D(2)
wb

D(1)
wb +D(2)

wb

(20)

D(1)
wb = dL

(
1

2πkt
ln

rto

rti
+

1
2πkann

ln
rci

rto

)−1

(21)

D(2)
wb = dL

(
1

2πkc
ln

rco

rci
+

1
2πkcem

ln
rw

rco

)−1

(22)

where D(1)
wb is the thermal conductivity of the oil pipe and

annular layer, and D(2)
wb is the thermal conductivity of the casing

and drilling mud.
Since there were two nodes in the reservoir, an additional

equation ∆Ps f−e was required to relate Pe to Ps f . This equation
is the steady-state Darcy equation, which also considers the
effect of the skin factor:

∆Ps f−e = Pe −Ps f =
Qµ

2πkHhT

(
hT

Lw
S+ ln

re

rw
+SG

)
(23)

where Pe is the formation static pressure, Ps f is the sand face
inflow pressure, Q is the volumetric flow rate, µ is the fluid
viscosity, kH is the formation permeability, hT is the reservoir
thickness, Lw is the wellbore length, SG is the geometric skin,
and S is the mechanical skin factor.

Positive skin factor:

Ps f = Ps +
QµS

2πkHLw
(24)

Pe = Ps f +
Qµ

2πkHhT

(
ln

re

rw
+SG

)
(25)

Negative skin factor:

Ps f = Ps (26)

Pe = Ps f +
Qµ

2πkHhT

(
ln

re

rw
+SG +

hT

Lw
S
)

(27)

After determining an average pressure point in a wellbore
segment and the flow temperature in the wellbore, iterative
calculations could be performed to determine Pe and Ps f at
different locations. Combining the earlier energy equations
allowed the researchers to obtain the temperature profiles of
the wellbore fluid Ts and the formation fluid Ts f .

Based on the established wellbore temperature forward
model and neural network methods, the technical roadmap for
this study is shown in Fig. 4.

3. Optimization of temperature parameters and
neural network models

3.1 Temperature-influencing parameters
Based on the theoretical model and calculation process

explained in the previous section, production profile temper-
ature interpretation was conducted. The impact of different
sensitivity parameters on the production temperature was
analyzed using forward simulations, considering the impact of
factors such as oil production, geothermal gradient, and crude
oil density on the temperature response slope. As illustrated
in Table 1, the data were organized according to a specific
production segment of well X. The results presented in Table 2
and Fig. 5 demonstrate the variations in the slope for different
production rates from production layer 2. In these figures, K
represents the geothermal gradient slope, K3 is the temperature
slope for the lower wellbore, K2 is the temperature slope for
the upper 4-8 m of the lower section, and K1 is the temperature
slope for the upper wellbore. These four parameters were
used to collectively and accurately characterize the trend of
temperature variations.
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Table 2. Basic parameters for different production rates from production layers 1 and 2.

Layer Scheme Oil rate (m3/d) K1 (m/◦C) K2 (m/◦C) K3 (m/◦C) K1/K K2/K K3/K

1

1 1.38 126.970 53.682 125.750 2.095 0.886 2.075

2 2.38 137.100 128.290 145.090 2.262 2.117 2.394

3 3.38 139.070 70.396 158.860 2.295 1.162 2.621

4 4.38 144.790 170.170 268.770 2.389 2.808 4.335

5 5.38 149.710 179.330 166.740 2.470 2.959 4.751

2

1 2.4 53.682 89.745 93.268 0.886 1.481 1.539

2 4.4 55.746 89.744 93.268 0.92 1.481 1.539

3 6.4 60.008 89.744 93.268 0.99 1.481 1.539

4 8.4 76.331 89.744 93.268 1.259 1.481 1.539

5 10.4 113.33 89.744 93.268 1.87 1.481 1.539
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Fig. 5. Temperature response curves for different volumes of
oil production from production layer 2.

To evaluate the impact of production rates on temperature
distribution, a sensitivity analysis was conducted. As shown

in Table 2 and Fig. 5, the wellbore temperature exhibited a
clear increasing trend with rising oil production, indicating a
significant influence of production volume on thermal behav-
ior. Furthermore, as the production from layer 2 (K = 60.606
m/◦C) increased proportionally, the temperature slopes for
layer 1, layer 2, and the intermediate section, represented by
K1, K2, and K3, all increased accordingly. The normalized
slope ratios K1/K, K2/K, and K3/K also showed consistent
growth, reflecting an enhanced thermal response under higher
production conditions.

To assess the influence of production variations in the
upper reservoir, the temperature response of production layer
1 (K = 60.606 m/◦C) was systematically analyzed. As sum-
marized in Table 2 and Fig. 6, a clear positive correlation was
observed between oil production and wellbore temperature,
with production volume exerting a pronounced thermal effect.
As the production rate from layer 1 increased proportionally,



Wei, M., et al. Advances in Geo-Energy Research, 2026, 19(1): 30-42 37

Table 3. Basic parameters for different geothermal gradients.

Layer Oil production (m3/d) Formation temperature (◦C)

1 8.4 66.595

2 1.38 66.628
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Fig. 6. Temperature response curves for different volumes of
oil production from production layer 1.
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Fig. 7. Temperature response curves for different production
layers with varying geothermal gradients.

both the absolute temperature slope K1 and the normalized
slope ratio K1/K exhibited a gradual rise. In contrast, the
production rate in the upper layer showed a negligible impact
on the temperature gradient in the lower wellbore sections.

To further investigate thermal behavior under varying
geothermal conditions, additional simulations were performed
for both production layers. Table 3 summarizes the simulated
wellbore temperature profiles for different formation tempera-
ture gradients, and the resulting slope variations according to
these gradients are presented in Table 4 and Fig. 7. The simu-
lation results indicated that an increasing geothermal gradient
led to a decrease in the wellbore temperature. Specifically,
the normalized slope ratio K1/K gradually declined, whereas
K2/K and K3/K exhibited corresponding increases.

Additionally, the influence of reservoir thickness, pro-
duction time, rock thermal conductivity, crude oil thermal
conductivity, crude oil heat capacity, and crude oil density

on the production temperature profile was simulated, and
the results are shown in Figs. S1-S6 (in the Supplementary
file). From the figures, it is evident that production time
and crude oil thermal conductivity had negligible impacts on
the production temperature profile. Conversely, an increase
in reservoir thickness and rock thermal conductivity resulted
in a decrease in wellbore temperature. The heat capacity of
crude oil exerted a substantial influence on the temperature,
as evidenced by the observation that as the heat capacity
increased, the ratio of K1 to the K1/K temperature slopes also
increased. However, this effect had no substantial impact on
the lower section temperature slopes. The influence of crude
oil density on temperature was obvious. It is known that the
magnitude of crude oil density directly correlates with the ratio
of K1 to the K1/K temperature slope, with a concomitant
decrease in the degree of influence. However, as the depth
increases, the influence on the temperature slope of the lower
interval decreases.

Preliminary findings from the forward simulation analysis
indicated that the primary factors influencing production tem-
perature were oil production, geothermal gradient, reservoir
thickness, crude oil heat capacity, and crude oil density. To
further quantify their relative impacts, a local normalized
sensitivity coefficient Sc was introduced, defined as:

Sc =

∣∣∆Y/Yre f
∣∣∣∣∆X/Xre f
∣∣ (28)

where ∆Y is the change in the temperature slope, Yre f is the
reference value of the temperature slope, ∆X is the change
in the input parameter, and Xre f is the reference value of the
input parameter.

As illustrated in Table 5, the impact of the previously
identified main controlling factors was quantitatively substanti-
ated. Among these factors, oil production was identified as the
primary contributor to temperature fluctuations. Conversely,
production time and rock thermal conductivity exhibited min-
imal influence on the production temperature profile and could
be disregarded.

3.2 Neural network models
By analyzing the response characteristics of the pure oil

production temperature profile, it was determined that the
meanings represented by the three parameters K1, K2, and K3
were analogous but represented different positions. However,
K2 indicated the temperature response of the intermediate
transition layer section. This layer section was subject to
the effects of both heat loss from the upper layer and heat
contribution from the lower layer. Concurrently, these phe-
nomena reflected the production influences of both the upper
and lower layers. Furthermore, compared with K1 and K3,
K2 was a nonperforated section that was less influenced by
additional factors during the development process, with more
stable changes, which more accurately reflected the influence
of reservoir physical properties. Therefore, to simplify the
model, only K2 was used in the subsequent analysis. Following
a thorough analysis of the available data, five parameters were
ultimately selected for use in the intelligent interpretation mo-
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Table 4. Basic parameters for multiple schemes at different geothermal gradients.

Scheme dT/dZ
(◦C/100 m) K (m/◦C) K1 (m/◦C) K2 (m/◦C) K3 (m/◦C) K1/K K2/K K3/K

1 1.65 60.606 41.790 89.748 93.262 0.690 1.481 1.539

2 1.95 51.282 33.685 76.255 76.850 0.657 1.487 1.499

3 2.25 44.444 28.213 66.289 65.350 0.635 1.492 1.470

4 2.55 39.216 24.270 58.626 56.843 0.619 1.495 1.449

5 2.85 35.088 21.294 52.552 50.296 0.607 1.498 1.433

6 3.15 31.746 18.968 47.617 45.101 0.597 1.500 1.421

Table 5. Sensitivity analysis of different factors.

Factors Sc

Oil production 0.136

Geothermal gradient 0.086

Reservoir thickness 0.057

Crude oil heat capacity 0.053

Crude oil density 0.026

Production time 0.0031

Rock thermal conductivity 0.0029

del: Reservoir thickness, crude oil density, crude oil heat
capacity, geothermal gradient, and K2/K. A simulation was
conducted to predict the production temperature profiles for
5,000 combinations of these parameters, resulting in prediction
samples for single-phase oil well production profiles. The
simulation results are shown in Table 6, with only a selection
of the combinations presented due to the large number of
scenarios.

Based on the sample data shown in Table 6, BP neural
network, RBF neural network, and FCNN were trained and
tested for prediction. To mitigate overfitting and enhance
model generalizability, L2 regularization with a coefficient of
0.0001 was consistently applied as a unified strategy across all
three neural network architectures during the training process.
The relationship between oil production rate and temperature,
as explained in Section 3.1, was used to invert predicted
temperatures and estimate production rates. The most effective
automated production rate interpretation method was deter-
mined through comparative analysis.

(1) Training for BP parameters
Based on the 5,000 sample datasets, 3,500 samples were

randomly selected for training, and the remaining 1,500 sam-
ples were used for prediction. The BP neural network predic-
tion method was applied, and the impact of three parameters-
prediction set proportions, number of neurons, and iteration
counts-on the prediction results was optimized. Figs. S7(a)-
S7(c) in the Supplementary file show comparisons between the
predicted and actual production rates under different prediction
set proportions, neuron numbers, and iteration counts.

Table 6. Combined schemes (partial display).

Reservoir
thickness
(m)

Oil
density
(kg/m3)

K2/K
Oil heat
capacity
(J/(kg·°C))

dT/dZ
(°C/100
m)

Oil pro-
duction
(m3/d)

5.6 870 1.683395 1,800 2.17 18

6.6 885 1.02708 1,800 1.77 2

6.6 870 1.938463 2,050 1.97 16

6.6 870 1.030671 1,800 1.97 2

5.6 885 1.229454 1,800 1.77 12

4.6 895 1.021985 1,900 1.77 16

6.6 870 1.464179 1,900 1.97 8

5.6 895 1.109277 1,800 1.77 18

5.6 870 1.915658 2,050 2.17 18

4.6 870 1.298036 1,800 1.97 10

5.6 885 1.141264 1,800 1.77 6

4.6 895 1.024705 1,900 1.77 12

4.6 870 1.206136 1,900 1.77 6

5.6 885 1.168967 2,050 1.77 4

5.6 885 1.325401 1,900 1.77 14

5.6 870 1.716468 1,800 2.17 20

5.6 895 1.13619 1,900 1.77 8

5.6 885 1.112407 1,900 1.77 4

6.6 870 1.470611 1,800 2.17 8

4.6 870 1.427945 2,050 1.77 12

4.6 885 1.033844 1,800 1.77 4

4.6 870 1.479699 1,800 2.17 18

5.6 870 1.800281 1,900 2.17 18

(2) Training for RBF parameters
Similarly, 3,500 samples were randomly selected for train-

ing, and the remaining 1,500 samples were used for prediction.
The RBF neural network prediction method was applied, and
the impact of three parameters (RBF density, learning rates,
and prediction set proportions) on the prediction results was
optimized. Figs. S8(a)-S8(c) in the Supplementary file show
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Table 7. Best parameters for the three neural network
models.

Method Parameter Value

BP

Prediction sets 0.2

Neurons 3

Iteration counts 400

RBR

Prediction sets 0.2

Density 400

Learning rates 0.001

FCNN

Optimizers Nadam

Prediction sets 0.2

Neurons 128

Batch sizes 4
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Fig. 8. Comparison of the three prediction methods with actual
production rates.

comparisons between the predicted and actual production rates
under different predictions of the proportion of sets, radial
basis densities, and learning rates.

(3) Training for FCNN parameters
Again, 3,500 samples were randomly selected for training,

and the remaining 1,500 samples were used for prediction,
as in the previous method. The FCNN method was used for
prediction, and the model demonstrated both high generaliza-
tion ability and prediction accuracy. Based on a feasibility
analysis of the FCNN prediction method, the optimization
of four parameters (optimizers, prediction set proportions,
neuron numbers, and batch sizes) was conducted using the
sample data. Figs. S9(a)-S9(d) in the Supplementary file show
comparisons between the predicted and actual production rates
under different optimizers, prediction set proportions, neuron
numbers, and batch sizes.

Based on the parameter sensitivity analysis, the optimal
parameters for each neural network model were determined
(see Table 7). Comparative analyses of the three models
(BP, RBF, and FCNN) are presented in Fig. 8 and Table 8,
demonstrating that the FCNN model achieved superior overall

Table 8. Comparison of accuracy parameters for the
prediction results based on the three methods.

Method MAE RMSE R2 GPI

FCNN 0.3389 0.2347 0.9106 1.081

RBF 0.4425 0.2309 0.8586 0.016

BP 0.5102 0.4615 0.8011 -1.904

performance, with the highest coefficient of determination (R2)
and the most consistent prediction accuracy. To further validate
these findings and mitigate potential bias from individual
metrics, a global performance index (GPI) was employed
(Milan et al., 2015).

GPI =
3

∑
j=1

α j
(
ỹ j − yθ j

)
(29)

where ỹ j is the median of the scaled values of indicator j, yi j
is the scaled value of indicator j for model i, and α j equals
1 for j = 3 (R2) and -1 for all other indicators.

The GPI integrates multiple evaluation criteria into a single
composite score, which provided a more robust basis for model
comparison in this study, as shown in Table 8. According
to the GPI analysis, the models were ranked as follows:
FCNN, RBF, and BP. This quantitatively confirmed that the
FCNN model outperformed the other two models. The BP
model demonstrated the poorest performance, with the lowest
prediction accuracy, whereas the RBF model exhibited mod-
erate prediction performance. All three models demonstrated
the capacity to predict production capacity; however, the
FCNN model yielded predictions that were more precise and
reliable. Notably, all models maintained low computational
costs during training. This efficiency stemmed from the use of
a physics-based forward model to generate training data and
a carefully selected, low-dimensional set of input parameters,
which collectively and significantly reduced the computational
burden.

4. Field application

4.1 Preprocessing of field DTS data: Noise and
outlier handling

The forward model and neural network training described
in the previous sections were based on steady-state simulation
data, which validated the core feasibility of the method in a
controlled, noise-free environment. However, the researchers
recognized that DTS data acquired in the field are inherently
dynamic and inevitably contaminated by noise. Directly feed-
ing raw, noisy data into the trained model would have severely
compromised the accuracy and reliability of the prediction
results.

To enhance the generalization capability and robustness of
the intelligent interpretation method when applied to field data,
a dedicated data preprocessing workflow was introduced prior
to inputting the field data into the FCNN model. Preprocessing
consists of two sequential steps:

1) Outlier detection and removal using the Z-score (Ma
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Fig. 9. Comparisons of predicted and actual production rates: (a) Well XX-77-1 4/10, (b) Well XX-77-1 4/12, (c) Well XX-77-1
4/18 and (d) Well XX-18-1 5/08.

and Zhu, 2013): The first step aims to identify and remove
significant outliers that deviate drastically from the overall
temperature profile. The Z-score – a measure of how many
standard deviations a data point is from the mean – was
employed for this purpose. The Z-score was calculated as
follows for a temperature value Ti at depth i, as follows:

z =
Ti −µ

σ
(30)

where z is the Z-score standardized output data, and µ and
σ are the average and standard deviations of the data set.
Any data point with a Z-score that exceeded a threshold of
3 was considered an outlier and was removed. The removed
values were then interpolated using a linear method based on
neighboring valid data points.

2) For noise suppression in the processed temperature
profiles, a Savitzky-Golay filter was applied following outlier
removal (Savitzky and Golay, 1985). This approach effectively
attenuated high-frequency fluctuations while maintaining the
fidelity of key thermal transition features. In contrast to
conventional moving average techniques, which may distort
signal morphology, the Savitzky-Golay algorithm operates by
performing local polynomial regression on successive data
segments through linear least-squares fitting. This ensures ef-
fective noise reduction without substantially compromising the
resolution of salient temperature variations. Through empirical
evaluation, a configuration employing an 11-point window and

a second-order polynomial was adopted.

4.2 Application to well
Based on the preprocessing algorithm and the physically

constrained intelligent interpretation method established in this
study, the model was validated using actual DTS monitoring
data from two producing wells in the Qingyuan structural
zone within the Baoding depression, and the target formation
exhibited a geothermal gradient of 2.20 ◦C/100 m. Both Well
XX-77-1 and Well XX-18-1 were equipped with permanent
distributed fiber-optic monitoring systems installed outside
the casing, located in the 77X and 18X blocks, respectively.
The key production layer parameters for both wells, along
with the corresponding temperature monitoring data used for
interpretation, are summarized in Table 9.

The intelligent interpretation algorithm developed in this
study was applied to analyze production performance. As
shown in Figs. S10(a)-S10(d) (in the Supplementary file),
the computed temperature matched the observed data very
well, with minimal error, and the temperature distribution
was primarily controlled by the K2/K ratio. Based on the
baseline parameters for intelligent interpretation shown in
Table 9, automated interpretation of production profiles for
two wells was conducted using commercial software. The
results presented in Fig. 9 show strong correlations between
the predicted results and the actual production rates, with the
absolute error for each layer being less than 3.88%, demonstr-
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Table 9. Production segment parameters for Wells XX-77-1
and XX-18-1.

Well Date Thickness
(m)

Oil density
(kg/m3) K2/K

77-1

4/10 6.6 0.89 1.015

4/12 6.6 0.89 1.018

4/18 6.6 0.89 1.014

18-1 5/08 6.0 0.87 1.325

ating the effectiveness of the method. The intelligent interpre-
tation algorithm established in this study therefore provides
a foundation for field-scale reservoir management and well-
level production decision-making by facilitating the effective
interpretation of reservoir production behavior.

5. Conclusions
1) In this article, the researchers propose a forward model

for production well temperature profiles in wellbores
based on the principles of momentum conservation, en-
ergy conservation, and two-phase flow theory. The model
revealed the influence of various factors-oil production,
geothermal gradient, reservoir thickness, crude oil heat
capacity, crude oil density, production time, and rock ther-
mal conductivity-on production temperature. It identified
oil production, geothermal gradient, reservoir thickness,
crude oil heat capacity, and crude oil density as the
primary controlling factors. The model incorporates an
FCNN, an RBF neural network, and a BP neural network
for training and prediction, which the researchers used for
intelligent interpretation method optimization.

2) The creation of 5,000 combination schemes as single-
phase oil well production profile prediction samples was
based on the aforementioned controlling factors. Three
neural network methods were used for training and
prediction based on the sample data, and a compara-
tive analysis of the three methods was performed. The
findings showed that the FCNN method demonstrated
a high degree of accuracy, with the predicted outcomes
exhibiting strong congruence with the actual production
capacity distribution. This method, therefore, has substan-
tial advantages in terms of precision and expediency.

3) Based on the optimized algorithm, production rates for
Well XX-77-1 and Well XX-18-1 were predicted. The re-
sults demonstrated that the predicted values were closely
aligned with the actual measured production data for each
layer, indicating that the developed algorithm provides
reliable predictions for single-phase oilwell production
profiles under real-world operating conditions.

In this study, the researchers established a simplified
forward model for predicting production well temperature
profiles in wellbores, with the primary aim of verifying the
feasibility of the intelligent interpretation method for mul-
tilayer commingled production under single-phase oil flow
conditions. It should be noted that the current model is not

applicable to multiphase flow scenarios, as the simplified
physical framework does not account for the complex thermal
and phase behavioral characteristics of such environments.
This represents a key limitation of the present study. In the
future, the researchers will focus on two main objectives:
First, extending the physical forward model to incorporate
multiphase flow mechanisms, and second, developing more
advanced interpretation algorithms within an enhanced phys-
ical framework to further improve prediction accuracy across
a wider range of production conditions.
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