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Abstract:

CO; plume geothermal systems offer a promising pathway for simultaneous carbon
sequestration and renewable energy production, yet their optimization remains computa-
tionally prohibitive due to the complexity of coupled multi-phase flow, heat transport,
and thermodynamic processes. This study presents a novel framework that integrates
Non-isothermal Unsaturated-saturated Flow and Transport modeling with quantum neural
network and hybrid quantum-classical ensemble regressors to accelerate CO, plume
geothermal system design optimization. The methodology employs latin hypercube
sampling to generate 1,000 Non-isothermal Unsaturated-saturated Flow and Transport
simulations across several parameter spaces, extracting statistical features that undergo
rigorous selection through Boruta, Chi-squared, and Pearson correlation algorithms with
a standardized weight threshold of higher than 0.75. Two quantum architectures were
developed to predict six geothermal variables, including system lifetime, injected, extracted,
stored CO, mass, cumulative energy recovery and average heat extraction rate within
lifetime. The quantum models achieved exceptional accuracy for most variables in the
test section, with hybrid quantum-classical ensemble regressors architectures consistently
outperforming quantum neural network variants, particularly when combined with boruta
feature selection. Two optimization algorithms were employed for CO, plume geothermal
system design, including moth flame optimization for single objectives and non-dominated
sorting genetic algorithm II for multi-objective scenarios to find robust optimal solutions
based on developed surrogate models for injection overpressure, well spacing near and
maximizing thermal energy extraction. The framework transformed a computationally
intractable optimization requiring extensive simulation time into a rapid calculation while
maintaining prediction accuracy comparable to full-physics models.

1. Introduction

The urgent need to mitigate climate change while meeting
growing global energy demands has intensified the search
for innovative technologies that can simultaneously address
carbon emissions and renewable energy production (Metz et
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al., 2005). Traditional carbon capture and storage technologies,
while technically proven, face significant economic barriers
due to high operational costs and the absence of direct revenue
generation, necessitating novel approaches that can transform
CO; sequestration from a costly burden into an economically
viable opportunity (Mac et al., 2017; Bui et al., 2018). As a
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carbon capture, utilization, and storage approach, CO, plume
geothermal (CPG) systems have emerged as a promising
technology that re-conceptualizes injected CO, not merely
as waste to be stored, but as a valuable working fluid that
can extract geothermal energy from sedimentary basins and
depleted hydrocarbon reservoirs previously considered un-
suitable for conventional geothermal development (Randolph
and Saar, 2011; Chen et al., 2021). CPG systems generally
achieve higher power generation efficiency than water-based
geothermal systems, especially in low-permeability or low-
temperature reservoirs, due to CO,’s superior thermophysical
properties. CO, has lower viscosity than water, indicating
higher mobility during migration in porous reservoir forma-
tions. Particularly, the significant thermosiphon effect during
COs-circulated geothermal extraction can achieve pump-free
cycle, saving tremendous power consumption in tradition
water-based geothermal harvest (Norouzi et al., 2022; Zhong
et al.,, 2023; Antoneas and Koronaki, 2024). The unique
thermophysical properties of supercritical CO,, particularly
its lower viscosity compared to water, higher mobility, and
substantial compressibility which can enable more efficient
heat extraction through enhanced buoyancy-driven circulation
and improved reservoir sweep efficiency, while the injected
CO, remains permanently sequestered through multiple trap-
ping mechanisms including structural, residual, solubility, and
mineral trapping (Fleming et al., 2018; Ezekiel et al., 2020;
Rajabi et al., 2021). This dual-benefit approach fundamentally
transforms the economics of both carbon sequestration and
geothermal energy by creating a synergistic system where
revenues from renewable electricity generation can offset car-
bon capture and storage costs, potentially enabling widespread
deployment of carbon-negative baseload power generation
that addresses both climate mitigation and energy security
challenges simultaneously (Buscheck et al., 2016; Chen et
al., 2022; Titus et al., 2023; Loschetter et al., 2025).

The numerical modeling of CPG systems presents
formidable computational challenges arising from the com-
plex interplay of coupled non-isothermal multi-phase flow,
multicomponent transport, thermodynamic phase transitions,
and geochemical reactions that must be resolved across mul-
tiple spatial and temporal scales (Pruess, 2008). High-fidelity
simulators such as Non-isothermal Unsaturated-saturated Flow
and Transport (NUFT) require solving large systems of highly
nonlinear partial differential equations, where even a single
forward simulation of a field-scale CPG reservoir over its op-
erational lifetime can demand days or weeks of computational
time on high-performance computing clusters, making com-
prehensive optimization studies computationally prohibitive
(Buscheck et al., 2012; Chen et al., 2021). This computational
burden becomes particularly acute when conducting robust
uncertainty quantification and optimization studies, where
thousands of simulations are typically required to explore
parameter spaces, evaluate different well configurations, and
assess geological uncertainties, transforming what should be
routine design tasks into computationally intractable problems
that can require months of continuous computation (Dai et
al., 2014; Rajabi et al., 2021). The situation is further com-
plicated by the need to capture critical phenomena such as

Mohammadi, B., et al. Advances in Geo-Energy Research, 2025, 18(2): 137-152

thermal breakthrough, viscous fingering, gravity override, and
convective mixing, which require fine spatial discretization and
small-time steps to resolve accurately, yet doing so exponen-
tially increases computational demands (Garapati et al., 2015;
Williams and Chadwick, 2021). Researchers face an inherent
trade-off between model fidelity and computational tractabil-
ity: simplified analytical or reduced-order models enable rapid
calculations but may miss crucial physics that govern system
performance, while high-fidelity numerical models capture
complex phenomena but require computational resources that
exceed practical limits for iterative design optimization and
real-time reservoir management (Norouzi et al., 2021; Wen et
al., 2021; Rajabi et al., 2022). This computational bottleneck
has emerged as a critical barrier preventing the widespread
deployment and optimization of CPG technology, as operators
require rapid design tools and adaptive management strategies
that current numerical modeling frameworks cannot provide
within reasonable timeframes or computational budgets.

Surrogate modeling approaches for geothermal systems
have undergone significant evolution from simple methods
to sophisticated machine learning (ML) architectures, demon-
strating substantial computational speedup while maintain-
ing acceptable accuracy for production forecasting and op-
timization tasks (Wang et al., 2022; Ye et al., 2024; Li et
al., 2025). Classical ML algorithms, including random forests,
support vector machines, and artificial neural networks, have
been successfully deployed for various reservoir modeling
applications such as permeability field reconstruction, thermal
breakthrough prediction, and well placement optimization,
with deep learning models particularly excelling at capturing
spatiotemporal patterns in pressure and temperature fields from
limited observation data (Nikravesh et al., 2001; Teixeira and
Secchi, 2019; Saikia et al., 2020; Ng et al., 2023). How-
ever, conventional ML models face fundamental limitations
in extrapolating beyond their training domains and struggle
to preserve critical physical constraints (Malik, 2020; Shen
et al., 2023), such as mass conservation, energy balance, and
thermodynamic consistency, leading to non-physical predic-
tions when operating conditions deviate significantly from
training scenarios. The inherent accuracy-efficiency paradox
manifests prominently in current surrogate models: physics-
informed neural networks that incorporate governing equations
achieve higher fidelity but require substantially longer training
times and struggle with convergence for strongly coupled
multiphysics problems, while purely data-driven models train
rapidly but exhibit poor generalization for complex phase
transition regions and near-critical fluid states (Fraces and
Tchelepi, 2021; Zhou et al., 2022; Semler and Weiser, 2023;
Chen, 2024).

Previous studies have successfully demonstrated the appli-
cation of data-driven methods for CPG system optimization
and prediction with bagging multivariate adaptive regression
splines and artificial neural networks approaches in North
Oman reservoirs (Rajabi et al., 2022; Chen et al., 2023). How-
ever, while these classical ML approaches provide substantial
computational acceleration, they face inherent limitations in
capturing the full complexity of multi-phase flow dynamics,
particularly the intricate phase transitions, thermodynamic
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interactions, and nonlinear coupling between CO; properties
and heat transport that govern CPG system performance.
Furthermore, existing studies typically apply ML models
directly without systematic feature engineering or rigorous
selection of predictive variables, potentially missing critical
relationships and introducing noise that compromises model
accuracy and generalization. Although ML techniques have
been widely applied across reservoir engineering, quantum
machine learning (QML) has received little attention in the
context of geothermal energy, and its application to CPG
systems presents a novel opportunity for advancing surrogate
modeling and optimization. This gap presents an opportunity
for QML frameworks that combine comprehensive feature
selection methodologies with quantum-inspired pattern recog-
nition capabilities, leveraging quantum gate operations and
entanglement to create nonlinear feature transformations and
capture subtle correlations for enhanced surrogate modeling of
complex CPG systems.

This research presents novel quantum-based ML frame-
works that combine both feature engineering and quantum
computing capabilities to overcome the computational barriers
limiting CPG system optimization, with the primary objective
of developing an efficient QML-based surrogate model that
achieves high accuracy while dramatically reducing compu-
tational time compared to traditional NUFT simulations. The
proposed integration methodology establishes a novel surro-
gate model to combine NUFT and QML hybrid framework
where high-fidelity NUFT simulations generate training data
for quantum neural network (QNN) and hybrid quantum-
classical ensemble regressors. In addition, quantum-scaled
feature encoding and three comparative feature selection al-
gorithms (Boruta, Chi-squared filter, and Pearson correlation)
systematically identifying optimal input parameters for pre-
dicting critical performance metrics including system lifetime
(tLife), injected CO, within lifetime (iCO;), extracted CO;
within lifetime (eCQO,), stored CO, within lifetime (sCO,),
cumulative energy recovered in lifetime (extEn), and heat ex-
traction rate averaged over the lifetime (extQh). Therefore the
current study seeks: (1) the pioneering application of QML to
CPG system optimization, demonstrating quantum advantage
in capturing the nonlinear, multi-scale physics of coupled CO;-
heat-flow processes; (2) a comprehensive comparative analysis
of feature selection methodologies, revealing that quantum-
enhanced feature spaces achieve superior performance in
identifying critical parameters; (3) applying a novel hybrid
optimization framework based on a developed surrogate model
utilizing moth flame optimization (MFO) for single-objective
scenarios and non-dominated sorting genetic algorithm II
(NSGA-II) for multi-objective problems to maximize thermal
energy.

2. Methodology

2.1 Data preparation and framework design

The NUFT code v2.0 is employed as the primary numerical
simulator for modeling coupled CO;-brine multi-phase flow
and heat transport in the geothermal reservoir system. In this
study, the three-dimensional computational domain represents
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a fault-bounded reservoir block in North Oman (Chen et
al., 2023). More detailed information regarding the NUFT
model framework and spatial discretization is provided in
Supplementary A of the supplementary information , and
information about the initial conditions and simulation sce-
narios is provided in Supplementary B of the supplementary
information. A comprehensive dataset was generated using
latin hypercube sampling to systematically explore the seven-
dimensional parameter space encompassing both operational
decision variables and geostatistical parameters controlling
reservoir heterogeneity. The latin hypercube sampling ap-
proach generated 100 quasi-random samples ensuring uniform
coverage across the parameter ranges: injection well over-
pressure (5-15 MPa), well spacing (400-1,000 m), porosity
variance (0.001-0.004), azimuth angle (0-45°), and correlation
lengths in X, Y, and Z directions (100-1,000 m, 100-1,000 m,
and 1-20 m, respectively). For each parameter combination,
10 equally probable realizations of the spatially correlated
porosity-permeability fields were generated using sequential
gaussian simulation, resulting in 1,000 unique reservoir models
that capture geological uncertainty while maintaining com-
putational feasibility. Each NUFT simulation produces four
primary output files recorded at hourly timesteps over the
operational lifetime: (1) CO, mass rate injected, (2) CO, mass
rate produced, (3) average temperature of produced fluid (°C),
and (4) produced heat flux (MW).

Six performance indicators were derived from the raw
NUFT simulation outputs to comprehensively characterize
CPG system performance across thermal, storage, and opera-
tional dimensions. The target variables (explained in Table 1)
include tLife, iCO,, eCO;, sCO,, extEn, and extQh. To capture
the temporal dynamics and reduce dimensionality for ML
applications, four statistical features were extracted from each
time-series output of CI, CP, CPQ, and CPT, including mean,
range (maximum-minimum), standard deviation, and median
values, transforming the high-dimensional temporal data into a
tractable feature vector. The statistical features were computed
for each of the 10 realizations per sample and subsequently
averaged to obtain 100 representative feature vectors, creating
a robust dataset where each sample encapsulates both the
central tendency and variability of system behavior. Then
these variables, together with decision variables (Dp and Lw)
and geostatistical parameters (Var, Az, CLx, Cly, CLz), were
considered as input of ML models. Table 1 presents all input
parameters and output variables used in the CPG system
modeling in the current study.

Fig. 1 shows the developed framework of the current
study. The proposed framework consists of four intercon-
nected phases: numerical simulation using NUFT modeling
to generate comprehensive datasets from decision variables,
including injection well overpressure and well spacing pa-
rameters, followed by a feature selection phase employing
the Boruta algorithm, Chi-squared filter, and Pearson cor-
relation analysis to identify the most influential parameters.
The selected features undergo preprocessing through power
transform, principal component analysis , and quantum scaling
to create quantum-ready inputs for surrogate model develop-
ment using both QNN and HQER to predict key geothermal
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Fig. 1. Comprehensive quantum-enhanced framework for geothermal energy optimization integrating numerical simulation,

feature selection, QML surrogate modeling, and multi-objective

parameters, including CO; lifetime and extraction efficiency.
The final optimization phase implements both single-objective
MFO and multi-objective NSGA-II algorithms to maximize
produced geothermal energy while optimizing injection well
operational parameters, demonstrating the integration of QML
with traditional optimization techniques for enhanced geother-
mal system performance. The feature selection algorithms,
quantum machine learning models, and classical baseline
development are described in Supplementary B of the sup-
plementary information.

2.2 Optimization frameworks via single and
multi-objective optimization approaches

The optimization framework employs the best-performing
developed QML models, where each of the six target variables

optimization for maximizing geothermal energy production.

(tLife, iCO,, eCO,, sCO,, extEn, extQh) was independently
predicted using QNN or HQER models under various feature
selection scenarios (Boruta, Chi-squared, Pearson correlation).
The best model for each target variable was identified based on
test set performance metrics. The optimization framework im-
plements two optimization algorithms tailored to the problem
dimensionality; including MFO for single-objective scenarios
and NSGA-II for multi-objective problems.

The MFO algorithm (Mirjalili, 2015), a nature-inspired
metaheuristic based on the transverse orientation navigation
behavior of moths, was employed in this study. The optimiza-
tion process utilized a population of 40 moths evolving over
300 iterations, where each moth’s position denoted a candidate
solution and flames represented the best solutions obtained.
Position updates were governed by a logarithmic spiral mech-
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Table 1. Summary of input parameters, NUFT simulation outputs, and target variables used in the developed QML

framework for CPG system optimization.
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Model ID Parameters Unit
. . Dp Overpressure at the injection well MPa
Decision variables
Lw Well space m
Var Variance /
Az Azimuth °
Geostatistical parameters to .
generate a porosity field CLx Correlation Length x m
CLy Correlation Length y m
CLz Correlation Length z m
CI CO; mass rate injected kgls
CP CO; mass rate produced kgls
NUFT flow model
CPQ Produced heat flux in MW Mega Watts: 10° Joule/second
CPT Average temperature of produced fluid °C
tLife Years until production well drops below 80 °C  Year
iCO, Injected CO, within lifetime Mt
. eCO, Extracted CO, within lifetime Mt
Target variables
sCO, Stored CO, within lifetime Mt
extEn Cumulative energy recovered in lifetime 1015 J (P))
extQh Heat extraction rate averaged in lifetime MW

anism. For multi-objective optimization, the NSGA-II was
used to perform multi-objective optimization. The algorithm
was configured with a population size of 40, 300 generations,
a tournament size of 2, a crossover probability of 0.7 with
a distribution index of 5, and a mutation probability of 0.2
with a distribution index of 10. This configuration enabled the
exploration of the Pareto front, capturing the optimal trade-
offs among conflicting objectives. The optimization algorithm
parameters were selected based on established guidelines from
prior studies and preliminary convergence tests to ensure a
balance between computational tractability and convergence
reliability. Six distinct optimization scenarios were developed
to investigate different trade-offs in the design of the CPG
system. Each scenario targeted a unique combination of ob-
jectives, as listed in Table 2, ranging from maximizing a
single objective to simultaneously optimizing multiple ob-
jectives. Details of the model accuracy assessment metrics,
including the mean absolute error (MAE), root mean square
error (RMSE), relative error expressed as the RMSE—standard
deviation ratio (RSR), refined index of agreement (dr), and
the coefficient of determination (R?), are provided in Supple-
mentary C of the supplementary information.

3. Results and discussion

3.1 Feature selection

The application of three distinct feature selection algo-
rithms revealed significant variability in the identified crit-

ical predictors for each target variable, demonstrating the
complex, nonlinear relationships between NUFT simulation
outputs and CPG system performance metrics (Table 3). The
BO consistently identified compact feature sets emphasizing
temperature statistics (CPT_mean, CPT_median) for tLife and
Lw_m and Az_deg combined with CPT_mean for iCO,,
eCO,, sCO,, and extEn, while selecting a broader set of fea-
tures including CP_range, CPQ_range, CP_mean, CP_median,
CP_sd, CPQ_mean, CI_median, CI_mean, CPQ_median for
extQh. CH method exhibited Lw_m and Az_deg as effective
variables for iCO,, eCO;, sCO;, and extEn, while it sug-
gested more effective variables for extQh. In contrast, PC
systematically selected the largest feature sets, particularly for
tLife (15 features) and extQh (15 features), capturing corre-
lations through comprehensive inclusion of CI, CP, CPT, and
CPQ statistics along with Lw_m, Az_deg, and dP_MPa. The
consistent appearance of well Lw_m and Az_deg across all
CO»-related outputs (iCO,, eCO,, sCO,, extEn) underscores
their fundamental role in controlling CO; plume migration
and storage dynamics, while the dominance of production
statistics (CP_range, CPQ_range, CP_mean) for extQh reflects
the direct physical relationship between fluid production and
thermal energy recovery. The information presented in Table 4
served as the input variables for the QNN and HQER models,
which were compared with two widely used classical ML
algorithms, namely generalized boosted regression (GBR) and
gradient boosted trees (GBT). Details of the GBR and GBT
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Table 2. Optimization scenarios formulated for CPG system design, highlighting different combinations of objectives and
corresponding optimization rounds. Note: “max” denotes maximization of the corresponding objective, while “min” denotes

minimization.
Scenario No. Objective(s) Round
1 extEn Max extEn
2 extEn, extQh Max extEn + max extQh
3 extEn, extQh, tLife Max extEn + max extQh + max tLife
4 extEn, sCO, Max extEn + max sCO,
5 extEn, sCO,, iCO, Max extEn + max sCO;, + min iCO,
6 extEn, sCO,, iCO,, extQh, tLife Max extEn + max sCO; + min iCO, + max extQh + max tLife
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Fig. 2. Standardized feature importance weights (0-1 scale) for tLife (a) and extEn (b) across three feature selection methods.

models are provided in Supplementary B of the supplementary
information.

The standardized feature importance weights across the
three selection algorithms reveal distinct patterns in how
different statistical measures influence each target variable,
with notable variations in both the magnitude and consis-
tency of feature contributions (Fig. 2 and Fig. D1 of Sup-
plementary D in the supplementary information). For sys-
tem lifetime (tLife), temperature-related features (CPT_mean,
CPT_median, CPT_range) consistently achieve high impor-
tance weights across all three methods, particularly under PC,
which assigns weights exceeding 0.90, confirming temperature
as the primary driver of operational longevity. The CO; mass
balance variables (iICO,, eCO,, sCO;) exhibit remarkably
similar feature importance profiles, with geometric parameters
(Lw_m, Az_deg) demonstrating uniformly high weights (>
0.75) across all selection methods, while production and injec-
tion statistics show method-dependent importance, Boruta and
Chi-squared assign minimal weights to most flow statistics,
whereas PC method identifies moderate importance (0.50-
0.75) for production metrics (CP_mean, CP_range). Thermal
energy extraction (extEn) displays a pattern nearly identical
to the CO, storage variables, reinforcing the coupled nature

of heat extraction and CO, circulation, with well spacing
emerging as the dominant predictor (standardized weight >
0.95) under all methods. In contrast, heat extraction rate
(extQh) shows a fundamentally different importance distri-
bution, where production and heat flux statistics (CP_range,
CPQ_range, CP_mean, CPQ_mean) consistently achieve high
weights (> 0.75) across all methods, while geometric pa-
rameters that dominate other outputs show relatively low
importance (< 0.50), highlighting the direct dependence of
instantaneous heat flux on current production conditions rather
than well configuration. The threshold application effectively
filtered out marginally relevant features, reducing the average
feature set size from 20 potential predictors to 3-15 selected
features depending on the method and target variable, with
Chi-squared consistently producing the most parsimonious
selections and PC method retaining the most comprehensive
feature sets.

3.2 Surrogate modeling performance

The surrogate QML models for tLife prediction demon-
strate strong performance across both architectures in Table
4, with HQER models generally outperforming QNN coun-
terparts during training while showing more heterogeneous
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Table 3. Selected features for each target variable using three feature selection algorithms and their corresponding QML and

classical model names.

Feature selection

No. method Input(s) Output Model

1 Boruta algorithm CPT_mean, CPT_median tLife BO-QNN1 BO-HQER1 BO-GBR1 BO-GBTI

2 Chi-squared filter CPT_range, CPT_median, CPT_mean tLife CH-QNN1 CH-HQER1 CH-GBR1 CH-GBTI1
CPT_median, CPT_mean, CPT_range,
CPQ_sd, CPQ_range, CP_range,

3 Pearson correlation ~CP_mean, CP_sd, CP_median, tLife PC-QNN1 PC-HQER1 PC-GBR1 PC-GBTI1
CI_mean, CI_median, CPQ_mean,
Lw_m, Az_deg, CPQ_median

4 Boruta algorithm Lw_m, Az_deg, CPT_mean iCO, BO-QNN2 BO-HQER2 BO-GBR2 BO-GBT2

5 Chi-squared filter Lw_m, Az_deg iCO, CH-QNN2 CH-HQER2 CH-GBR2 CH-GBT2
Az_deg, Lw_m, CPT_mean,

6 Pearson correlation ~ CPT_median, CP_median, CP_mean, iCO, PC-QNN2 PC-HQER2 PC-GBR2 PC-GBT2
CPQ_range, CP_range

7 Boruta algorithm Az_deg, Lw_m, CPT_mean eCO, BO-QNN3 BO-HQER3 BO-GBR3 BO-GBT3

8 Chi-squared filter Lw_m, Az_deg eCO, CH-QNN3 CH-HQER3 CH-GBR3 CH-GBT3
Lw_m, Az_deg, CPT_mean,

9 Pearson correlation ~ CPT_median, CP_median, CP_mean, eCO, PC-QNN3 PC-HQER3 PC-GBR3 PC-GBT3
CPQ_range, CP_range

10 Boruta algorithm Az_deg, Lw_m, CPT_mean sCO, BO-QNN4 BO-HQER4 BO-GBR4 BO-GBT4

11 Chi-squared filter Lw_m, Az_deg sCO, CH-QNN4 CH-HQER4 CH-GBR4 CH-GBT4
Az_deg, Lw_m, CPT_mean,

12 Pearson correlation CPT_median, CP_median, CPQ_range, sCO, PC-QNN4 PC-HQER4 PC-GBR4 PC-GBT4
CP_mean, CPT_range, CP_range

13 Boruta algorithm Az_deg, Lw_m, CPT_mean extEn BO-QNN5 BO-HQER5 BO-GBR5 BO-GBTS

14 Chi-squared filter Lw_m, Az_deg extEn CH-QNN5 CH-HQER5 CH-GBR5 CH-GBTS
Lw_m, Az_deg, CPT_mean,

15 Pearson correlation CPT_median, CP_median, CP_mean, extEn PC-QNN5 PC-HQER5 PC-GBRS5 PC-GBTS
CPQ_range, CP_range
CP_range, CPQ_range, CP_mean,

16  Boruta algorithm CP_median, CP_sd, CPQ_mean, extQh BO-QNN6 BO-HQER6 BO-GBR6 BO-GBT6
CI_median, CI_mean, CPQ_median
CPQ_range, CP_range, CP_mean,

17  Chi-squared filter CI_mean, CP_sd, CP_median, extQh CH-QNN6 CH-HQER6 CH-GBR6 CH-GBT6
CI_median, CPQ_mean, CPQ_median
CPQ_range, CP_range, CP_sd,
CI_median, CI_mean, CP_mean,

18  Pearson correlation CP_median, CPQ_mean, CPQ_median, extQh PC-QNN6 PC-HQER6 PC-GBR6 PC-GBT6

CPQ_sd, CI_sd, CPT_mean,
CI_range, CPT_median, dP_MPa

Notes: Features were selected based on a standardized weight threshold of >0.75, ensuring only the most influential predictors with strong
statistical significance were retained for the modeling process.
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Table 4. Performance metrics of surrogate QML models for tLife prediction comparing three feature selection methods and
two quantum-based architectures.

Phase Metrics BO-QNN1 CH-QNN1 PC-QNN1 BO-HQERI1 CH-HQERI PC-HQERI1
MAE 2.105 2.005 2.472 1.473 1.422 1.428
RMSE 3.122 3.191 4.073 2.427 2.303 2.519
Train RSR 0.313 0.320 0.408 0.243 0.231 0.253
dr 0.863 0.870 0.839 0.904 0.908 0.907
R2 0.901 0.896 0.831 0.940 0.946 0.935
MAE 1.953 3.028 3.474 1.896 2.329 1.964
RMSE 2.422 3.678 4.546 2.641 3.377 2.512
Test RSR 0.226 0.344 0.425 0.247 0.316 0.235
dr 0.892 0.832 0.807 0.895 0.871 0.891
R2 0.946 0.876 0.810 0.936 0.895 0.942
Notes: The units for MAE and RMSE are in year.
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the Pearson correlation coefficient.

results in the test phase. During the training phase, CH-
HQERI1 achieved the best overall performance with the lowest
error metrics (MAE = 1.422 years, RMSE = 2.303 years, RSR
= 0.231) and highest accuracy indicators (dr = 0.908, R? =
0.946), closely followed by BO-HQERI, suggesting that the
HQER approach effectively captures the complex relationships
between input features and tLife. The QNN models exhibited
higher training errors but demonstrated better generalization
in certain cases, with BO-QNNI1 achieving the lowest test
RMSE (2.422 years) and RSR (0.226), along with the highest
test R? (0.946), indicating superior resistance to overfitting.

The feature selection methodology significantly influenced
model performance, with PC-QNN1 showing higher errors
across both training and test sets. The relatively small degra-
dation between training and test performance for most models
validates the robustness of the quantum feature extraction
approach and suggests that the models successfully learned
generalizable patterns rather than memorizing training data.
The mean absolute errors in the test set, ranging from 1.896
to 3.474 years, represent acceptable prediction accuracy, which
shows that the proposed surrogate models can effectively
replace computationally expensive NUFT simulations for rapid
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Table 5. Performance metrics of developed QML models for iCO, prediction, comparing three feature selection methods and
two quantum architectures.

Phase Metrics BO-QNN2 CH-QNN2 PC-QNN2 BO-HQER2 CH-HQER2  PC-HQER2
MAE 0.698 0.996 1.358 0.473 0.606 0.592
RMSE 0.865 1.243 1.678 0.632 0.815 0.825
Train ~ RSR 0.172 0.247 0.333 0.125 0.162 0.164
dr 0.919 0.885 0.843 0.945 0.930 0.932
R2 0.970 0.938 0.888 0.984 0.974 0.973
MAE 1.011 1.230 1.564 0.824 1.201 0.883
RMSE 1.282 1.571 1.944 1.153 1.538 1.156
Test RSR 0.235 0.288 0.356 0.211 0.282 0.212
dr 0.892 0.868 0.832 0.912 0.871 0.905
R2 0.942 0913 0.867 0.953 0.916 0.953

Notes: The MAE and RMSE units are in Mt.

tLife assessment.

The scatter plots of observed versus simulated tLife values
are shown in Fig. 3. All six models demonstrate strong linear
relationships between predictions and observations, with data
points clustering tightly around the 1:1 line. The QNN models
exhibit slightly more scattered predictions, especially PC-
QNNI1, which shows notable dispersion for both training and
test sets (r = 0.914 and 0.909, respectively). In contrast, the
HQER models display tighter clustering and achieve higher
correlation coefficients compared to the QNN models for both
train and test datasets (except the test section of BO-HQERI).
The visual separation between training and test data points
is minimal across all models, indicating robust generalization
without significant overfitting, with test set correlations often
matching or exceeding training correlations. The consistently
high Pearson correlation values (r > 0.9) across all models
confirm strong linear associations between predicted and ob-
served values.

The QML-based models for iCO, prediction exhibit ex-
cellent performance with HQER architectures, demonstrat-
ing clear superiority over QNN implementations, particularly
when combined with Boruta feature selection (Table 5). BO-
HQER?2 achieved exceptional training performance with the
lowest error metrics across all measures (MAE = 0.473 Mt,
RMSE = 0.632 Mt, RSR = 0.125) and highest accuracy indi-
cators (dr = 0.945, R? = 0.984), maintaining this dominance in
the test set with MAE of 0.824 Mt and R? of 0.953. The HQER
models consistently outperformed their QNN counterparts by
substantial margins, with training R? values exceeding 0.97 for
all HQER variants compared to 0.888-0.97 for QNN models,
suggesting that the ensemble approach with multiple classical
regressors better captures the nonlinear dynamics of iCO;
patterns.

The scatter plots for iCO, prediction (shown in Fig. 4)
reveal exceptionally tight clustering around the 1:1 perfect pre-
diction line across all six developed models. The HQER mod-
els consistently achieve higher Pearson correlation coefficients

than their QNN counterparts, with BO-HQER?2 attaining the
highest overall correlations (r = 0.992 for training, r = 0.977
for test), indicating near-perfect linear relationships between
predicted and observed values. All models show remarkable
consistency across the 5-25 Mt range with minimal scatter,
suggesting that the quantum feature extraction effectively
captures the relatively straightforward relationship between
inputs and outputs of QML models. The QNN models, while
showing slightly lower correlations, still maintain impressive
performance with all variants exceeding r = 0.93 for both
datasets, with BO-QNN2 achieving particularly strong results
(r = 0.985 training, r = 0.972 test). A notable characteristic
across all models is the minimal degradation between training
and test correlations, with differences typically around 0.02,
confirming robust generalization and absence of overfitting.

The performance metrics of the developed surrogate QML
models for eCO, prediction are listed in Table 6. BO-HQER3
resulted as the best model with training metrics (MAE = 0.277
Mt, RMSE = 0.361 Mt, RSR = 0.119, dr = 0.947, R?® =
0.986) and maintained this dominance in the test section (MAE
= 0.501 Mt, RMSE = 0.73 Mt, R? = 0.951), demonstrating
stability and generalization capability for eCO, prediction. In
general, all HQER variants achieve training R? values above
0.976 compared to 0.889-0.965 for QNN models, suggest-
ing that the HQER approach more effectively captures the
complex patterns of eCO;. The feature selection via Pearson
correlation-based models with expanded feature sets achieves
strong performance in HQER (test R? = 0.943) but suffers in
QNN architecture, indicating that HQER’s ensemble structure
better leverages diverse feature information. The relatively
modest increase in test errors, with MAE ranging from 0.501
to 0.862 Mt, confirms the developed models’ ability to predict
eCO, as surrogate models accurately.

The scatter plots for eCO, prediction demonstrate strong
relationships between observed and simulated values (shown
in Fig. 5), with all models achieving Pearson correlation
coefficients exceeding 0.94. The HQER models consistently
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Table 6. Performance metrics of QML models for eCO, prediction comparing three feature selection methods and two

quantum architectures.

Phase Metrics BO-QNN3 CH-QNN3 PC-QNN3 BO-HQER3 CH-HQER3 PC-HQER3
MAE 0.453 0.590 0.765 0.277 0.360 0.350
RMSE 0.559 0.709 0.999 0.361 0.464 0.458
Train RSR 0.185 0.234 0.331 0.119 0.154 0.151
dr 0.913 0.887 0.854 0.947 0.931 0.933
R? 0.965 0.944 0.889 0.986 0.976 0.977
MAE 0.740 0.806 0.862 0.501 0.780 0.598
RMSE 0.906 1.003 1.162 0.730 0.986 0.794
Test RSR 0.266 0.295 0.342 0.215 0.290 0.234
dr 0.873 0.862 0.852 0914 0.866 0.897
R? 0.925 0.908 0.877 0.951 0911 0.943

Notes: The MAE and RMSE units are in Mt.

outperform their QNN counterparts in terms of correlation
strength, with BO-HQER3 achieving the highest correlations
(r = 0.989 for train and r = 0.979 for test phases), demon-
strating near-perfect alignment along the 1:1 line. In addition,
all QNN models maintain impressive correlations, with BO-
QNN3 achieving r = 0.983 for the training and » = 0.972 for
testing sections. The HQER models display almost consistent
performance across all feature selection methods, with training
correlations ranging from 0.989 to 0.993 and test correlations
from 0.971 to 0.979, indicating that the ensemble approach
robustly integrates different feature sets to maintain high eCO,

prediction accuracy.

The QML models for sCO, prediction exhibit strong
performance (Table 7) with BO-HQER4 achieving the best
accuracy across all metrics. BO-HQER4 dominated both train-
ing (MAE = 0.276 Mt, RMSE = 0.377 Mt, RSR = 0.183,
dr = 0.921, R? = 0.966) and testing phases (MAE = 0.422
Mt, RMSE = 0.496 Mt, R> = 0.941), with the minimal R?
degradation of only 0.025 indicating robust learning of the
fundamental relationships between inputs and outputs dataset
in HQER models for sCO, prediction. The HQER architec-
tures consistently outperformed QNN models by substantial
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Table 7. Performance metrics of developed QML models for sCO, prediction, comparing three feature selection methods and
two quantum architectures.

Phase Metrics BO-QNN4 CH-QNN4 PC-QNN4 BO-HQER4 CH-HQER4 PC-HQER4
MAE 0.409 0.542 0.520 0.276 0.337 0.313
RMSE 0.531 0.693 0.691 0.377 0.452 0.443
Train RSR 0.257 0.335 0.334 0.183 0.219 0.214
dr 0.883 0.845 0.851 0.921 0.904 0.910
R? 0.933 0.886 0.887 0.966 0.952 0.954
MAE 0.519 0.531 0.774 0.422 0.491 0.544
RMSE 0.598 0.720 0.953 0.496 0.640 0.732
Test RSR 0.286 0.345 0.456 0.237 0.306 0.350
dr 0.852 0.848 0.779 0.880 0.860 0.845
R? 0914 0.875 0.781 0.941 0.901 0.871

Notes: The MAE and RMSE units are in Mt.

margins, with training R? values ranging from 0.952 to 0.966
for HQER compared to 0.886-0.933 for QNN, suggesting
that the ensemble approach more effectively captures the
complex process of sCO,. Chi-squared and Pearson correlation
feature selection approaches achieved comparable training
performance in HQER architectures (R> > 0.95) but showed
divergent test results, with PC-HQER4 experiencing larger
degradation (R?2 = 0.871) compared to CH-HQER4 (R? =
0.901), indicating that the minimal feature set may provide
better generalization for sCO; prediction. The QNN models
showed greater sensitivity to feature selection, with PC-QNN4

suffering significant test performance degradation (R? = 0.781)
despite reasonable training metrics, suggesting that the ex-
panded feature set introduced noise that the QNN architecture
could not effectively filter.

The scatter plots for sCO, prediction reveal strong corre-
lations between observed and simulated sCO, values (shown
in Fig. 6). The HQER models demonstrate superior perfor-
mance, with BO-HQER4 achieving the highest correlations
(r = 0.984 for training, r = 0.97 for testing phases), showing
exceptional alignment along the 1:1 prediction line. All models
exhibit tighter clustering in the lower storage range (2.5-5
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Mt) with increased dispersion at higher values (> 7.5 Mt),
suggesting that predicting larger amounts of sCO, becomes
more challenging. The QNN models, while showing slightly
lower correlations, still maintain strong predictive capability,
with BO-QNN4 achieving impressive performance (r = 0.969
training and r = 0.958 testing phases). A distinct pattern
emerges where Pearson correlation-based models show the
largest train-test correlation gaps (PC-QNN4: 0.946 to 0.927;
PC-HQER4: 0.978 to 0.933).

Table 8 presents the performance metrics of the developed
surrogate QML models for extEn prediction. The results show
outstanding predictive accuracy, with BO-HQERS delivering
exceptional performance that outperforms all other configura-
tions. BO-HQERS attained outstanding training metrics (MAE
=0.116 PJ, RMSE = 0.151 PJ, RSR = 0.122, dr = 0.946, R?
= 0.985) and maintained superior test performance (MAE =
0.212 PJ, RMSE = 0.307 PJ, R?> = 0.95), with the modest
R? degradation of 0.035 confirming robust generalization
despite the complex interplay between thermal transport, fluid
flow, and reservoir dynamics governing energy extraction. The
HQER architectures consistently outperformed QNN models
with training R? values exceeding 0.974 compared to 0.89-
0.961 for QNN variants, demonstrating that the HQER more
effectively captures the extEn process. Feature selection re-
vealed intriguing patterns where PC-HQERS, despite including
additional features beyond the core geometric parameters,
achieved the second-best test R? of 0.942, suggesting that
extEn prediction benefits from incorporating production statis-
tics when properly integrated through ensemble methods. The
QNN models showed reasonable performance with BO-QNNS5
achieving test R? of 0.915, resulted as the best QNN-base
model for extEn prediction.

Fig. 7 shows the scatter plots for extEn prediction that
demonstrate strong correlations between observed and simu-
lated extEn values, with all models achieving Pearson cor-
relation coefficients exceeding 0.93. BO-HQERS5 exhibits the
strongest performance with outstanding correlations (r = 0.993
for training and r = 0.978 for testing phases), showing near-
perfect alignment along the 1:1 prediction line. The HQER
models consistently outperform their QNN counterparts, with
all HQER variants achieving training correlations equal to or
above 0.988 compared to 0.945-0.982 for QNN models.

Table 9 presents performance metrics of the developed
QML models for extQh prediction. Boruta and Chi-squared
feature selection methods produced identical results within
each architecture, suggesting convergence on the same critical
production and heat flux statistics, while demonstrating a per-
formance gap between HQER and QNN architectures among
all target variables. BO-HQER6 and CH-HQERG achieved
identical exceptional training performance (MAE = 0.196 MW,
RMSE = 0.286 MW, RSR = 0.08, dr = 0.967, R> = 0.994)
and maintained this equivalence in testing (MAE = 0.419
MW, RMSE = 0.993 MW, R? = 0.95), indicating that both
feature selection methods identified the same optimal subset
of production-related features. The HQER-based model shows
superiority over the QNN-based model for extQh prediction,
with training R? of 0.994 versus 0.905-0.915 and test R? of
0.95 versus 0.795-0.901. PC-QNN6 achieved notably better
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test performance (R? = 0.901) compared to BO/CH-QNN6
(R = 0.795), indicating that the additional features selected
by Pearson correlation could provide better regularization for
the QNN architecture.

Fig. 8 shows the scatter plots for extQh prediction via the
developed QML models. The HQER-based models demon-
strate exceptional predictive accuracy with remarkably tight
clustering along the 1:1 line, achieving r = 0.997 for the
train sections of BO/CH-HQERG6 and r = 0.996 for the train
section of PC-HQERG. Both models showed slightly lower 1-
values in the test section compared to the corresponding values
in the training section. The superior performance of HQER
models maintains test correlations above 0.96 compared to
0.90-0.95 for QNN variants. The identical visual patterns and
correlations for BO and CH methods within each architecture
type provide evidence that both algorithms identified the same
input features for developed models.

The comparative performance of the developed quantum-
based and classical baseline models is presented in Supple-
mentary E of the supplementary information. The results of
the multi-objective optimization are provided in Supplemen-
tary F, and the limitations and future work are discussed in
Supplementary G of the supplementary information.

4. Conclusion

The optimization of CO;, plume geothermal systems rep-
resents a critical technological frontier for achieving simul-
taneous carbon sequestration and renewable energy produc-
tion, yet conventional numerical modeling approaches require
prohibitive computational resources that severely limit de-
sign optimization and uncertainty quantification capabilities
essential for commercial deployment. This study addresses
this fundamental computational barrier through the application
of QML to CPG system optimization, demonstrating that
QNNs and HQER can serve as accurate surrogate models
for complex multiphase flow and heat transport simulations.
This study successfully demonstrated the transformative po-
tential of QML for accelerating CPG system optimization
by developing a novel hybrid NUFT-QML framework that
achieves computational speedup while maintaining predic-
tion accuracy across all performance metrics. Each NUFT
simulation requires approximately 1 hour of computational
time, whereas the developed surrogate models significantly
reduce computation time. Specifically, the QNN model re-
quires about 163 to 562 seconds, and the HQER model takes
approximately 18 to 41 seconds, depending on the number
of input features used in the model. The comprehensive
evaluation of two quantum architectures (QNN and HQER)
combined with three feature selection methods (Boruta, Chi-
squared, Pearson correlation) revealed that HQER consistently
outperformed pure QNN, achieving exceptional accuracy with
R? > 0.95 for most target variables, particularly when paired
with Boruta feature selection method. The developed surrogate
QML models demonstrated remarkable generalization capabil-
ity with minimal train-test degradation, successfully capturing
complex nonlinear relationships between reservoir parame-
ters and system performance metrics, including extEn, sCO;,
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Table 8. Performance metrics of QML models for extEn prediction comparing three feature selection methods and two
quantum architectures.

Phase Metrics BO-QNN5 CH-QNN5 PC-QNN5 BO-HQERS5 CH-HQERS PC-HQER5
MAE 0.186 0.251 0.311 0.116 0.155 0.145
RMSE 0.243 0.301 0.410 0.151 0.198 0.191
Train RSR 0.195 0.242 0.329 0.122 0.160 0.153
dr 0.913 0.883 0.855 0.946 0.928 0.933
R? 0.961 0.941 0.890 0.985 0.974 0.976
MAE 0.289 0.338 0.359 0.212 0.336 0.247
RMSE 0.399 0.421 0.485 0.307 0.422 0.329
Test RSR 0.284 0.300 0.345 0.218 0.300 0.234
dr 0.880 0.860 0.851 0.912 0.861 0.897
R? 0.915 0.905 0.874 0.950 0.905 0.942

Notes: The units of MAE and RMSE are in PJ.

tLife, and extQh. Comparative analysis revealed that quantum-
enhanced models consistently outperform or match classical
baselines while requiring substantially fewer input features,
demonstrating clear quantum advantages in data efficiency and
feature economy. The integration of MFO for single-objective
and NSGA-II for multi-objective optimization enabled rapid
exploration of design spaces in northern Oman, converging to
robust optimal configurations with injection pressure around
5 MPa and well spacing near 970 m that naturally bal-
ance energy extraction, carbon sequestration, and operational
longevity. The practical implications of this research extend

beyond computational acceleration, establishing QML as a
viable technology for real-time reservoir management and
rapid techno-economic assessment of CPG systems, which is
important for commercial deployment. The convergence of
multiple optimization scenarios to similar optimal solutions
validates the robustness of the identified configurations and
suggests fundamental trade-offs in CPG system design that
transcend specific objective formulations.
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Table 9. Performance metrics of QML models for extQh prediction comparing three feature selection methods and two

quantum architectures.

Phase Metrics BO-QNN6 CH-QNN6 PC-QNN6 BO-HQER6 CH-HQER6 PC-HQER6
MAE 0.846 0.846 0.868 0.196 0.196 0.201
RMSE 1.037 1.037 1.099 0.286 0.286 0.316
Train RSR 0.289 0.289 0.307 0.080 0.080 0.088
dr 0.856 0.856 0.853 0.967 0.967 0.966
R? 0.915 0.915 0.905 0.994 0.994 0.992
MAE 1.123 1.123 1.028 0.419 0.419 0.493
RMSE 2.007 2.007 1.395 0.993 0.993 1.262
Test RSR 0.441 0.441 0.307 0.218 0.218 0.278
dr 0.848 0.848 0.861 0.943 0.943 0.933
R? 0.795 0.795 0.901 0.950 0.950 0.919

Notes: The units of MAE and RMSE are in megawatts (MW).
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