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Abstract:
Accurate prediction of the mechanical and thermal properties of CO2 hydrates is essential
for their applications in carbon sequestration and refrigeration, yet remains challenging
with empirical forcefields. In this work, a deep potential machine learning potential for
CO2 hydrate, trained on density functional theory datasets, is for the first time developed
to serve as a unified and accurate computational framework. The as-developed deep
potential machine learning potential achieves near-density functional theory accuracy in
energy, force, and virial stress predictions while enabling large-scale molecular dynamics
simulations at significantly reduced computational cost. Uniaxial stress-strain analyses
demonstrate that the model captures the tensile strength and progressive ductile-like
failure behavior. Thermal conductivity prediction agrees closely with experimental mea-
surements within 2% deviation, outperforming empirical forcefields. Vibrational dynamics
and phonon analyses reveal that the deep potential machine learning potential more
accurately describes the anharmonicity and phonon scattering, especially in high-frequency
modes, yielding physically realistic thermal transport behavior. This work establishes deep
potential machine learning potential as a robust tool for advancing CO2 hydrate-based
technologies by providing a path for accurate and efficient multi-property prediction.

1. Introduction
CO2 hydrates are crystalline inclusion compounds in which

guest CO2 molecules are encapsulated within hydrogen (H)-
bonded water cages under specific low-temperature and high-
pressure conditions (Warrier et al., 2018). Compared with
methane hydrates (Lin et al., 2022), CO2 hydrates exhibit
superior thermodynamic stability below 283 K and require
lower equilibrium pressures for formation (Kang et al., 2001;
Chen et al., 2009). These characteristics make them promising
materials for a variety of applications, including natural gas
exploration, carbon capture and storage (CCS) and refrigera-
tion technologies (Zhang et al., 2024b, 2024c; Hassanpoury-

ouzband et al., 2020; Yin et al., 2021; Lu et al., 2023).
Despite these prospects, the practical deployment of CO2

hydrate-based technologies requires a comprehensive under-
standing of their physical properties, yet substantial knowledge
gaps remain. In particular, characterization of their mechanical
behavior is crucial for ensuring geological stability during CO2
sequestration. However, experimental data for monocrystalline
CO2 hydrates are still lacking, and computational investi-
gations remain limited. Previous molecular dynamics (MD)
simulations have shown inconsistencies arising from forcefield
selection (Jia et al., 2017; Shi et al., 2018; Xu et al., 2020;
Zhang et al., 2023; Zhang et al., 2024b, 2024c). For instance,
Liu et al. (2022) reported Young’s moduli of 5.17-6.18 GPa
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Fig. 1. Structure diagram of sI CO2 hydrate. (Left) Molecular
configuration of the unit-cell. (Right) Clathrate cage configu-
ration, where blue and yellow indicate 512 and 51262 cages,
respectively.

and tensile strengths of 0.454-0.745 GPa. In contrast, Shi
et al. (2018) calculated Young’s moduli of 5.07-6.50 GPa
and tensile strengths of 0.192-0.789 GPa. Such discrepancies,
largely attributable to differences in water forcefields, restrict
the predictive reliability of conventional MD simulations.

Accurate evaluation of thermal conductivity is equally
crucial, as it governs heat transfer in hydrate-bearing sediments
and refrigeration systems, thereby influencing phase transfor-
mation kinetics and structural stability (Zhang et al., 2024a).
However, experimental measurements of CO2 hydrate thermal
conductivity have yielded inconsistent results. Liu et al. (2017)
reported values of 0.5530-0.5861 W/(m·K) using the transient
plane source method, while Wan et al. (2016) measured
values of 0.6394-1.070 W/(m·K) with the same technique.
Jiao et al. (2021), employing the 3ω method, measured a
lower value of 0.5300 W/(m·K). Similarly, MD simulations
exhibit substantial variations depending on the employed water
and CO2 models. Jiang and Jordan et al. (2010) reported
approximately 0.8055 W/(m·K) using SPC/E water and the
Zhang-Duan CO2 models (Berendsen et al., 1987; Zhang and
Duan et al., 2005), whereas Li et al. (2025) obtained 0.8850
W/(m·K) at 270 K with the OPLS-AA CO2 model and the
TIP4P/Ice water (Jorgensen et al., 1996; Abascal et al., 2005).
In contrast, Liu et al. (2021) computed lower values of
0.4836-0.7494 W/(m·K) using the CVFF forcefield (Hagler et
al., 1979). Other simulations combing TIP4P water with EPM2
(Jorgensen et al., 1983; Harris and Yung et al., 1995), TraPPE
or Zhang-Duan CO2 models yielded significantly higher values
of 1.030-1.157 W/(m·K) (Potoff and Siepmann et al., 2001;
Zhang and Duan et al., 2005; Wan et al., 2014). These large
variations, primarily due to forcefield dependence, impede reli-
able thermal transport predictions and pose a critical challenge
for applications requiring precise thermal management, such
as refrigeration and energy system optimization.

Accurate and simultaneous prediction of mechanical and
thermal transport properties is therefore paramount for ad-
vancing hydrate-based technologies. Achieving this compu-
tationally remains challenging. Although first-principles MD
offers high accuracy, it is prohibitively expensive for the
large-scale and long-time simulations required for reliable
property evaluation. These limitations underscore the promise
of machine learning potentials (MLPs), which can attain
near-quantum accuracy at computational costs comparable to
classical MD. While MLPs have demonstrated considerable

success in modelling water-based systems (Luo et al., 2023;
Xu et al., 2023; Song et al., 2025), no MLP has yet been
developed that can simultaneously and accurately capture both
mechanical and thermal transport properties of CO2 hydrates.
This capability is crucial, as these properties are governed
by intertwined atomic-scale phenomena, such as anharmonic
lattice vibrations and phonon scattering, which are beyond the
accurate representation of fixed-formed empirical potentials
and remain insufficiently addressed in existing MLP studies.
This limitation constrains reliable assessments of hydrate-
based CCS and refrigeration technologies, where precise un-
derstanding of mechanical stability and thermal efficiency is
vital.

To address this specific challenge, a Deep Potential (DP)-
based MLP (DP-MLP) for CO2 hydrate is developed to
uniquely bridge this gap. The novelty of this work is threefold.
First, unlike empirical potentials, the density functional theory
(DFT)-trained DP-MLP inherently capture the anharmonicity
and complex phonon scattering, both essential for realis-
tic thermal conductivity prediction. Second, it goes beyond
prior MLP studies by demonstrating high fidelity not only
in structural and thermal transport properties but also in
mechanical responses, including the tensile strength and the
progressive failure behavior under tension. Third, it estab-
lishes a unified and efficient computational framework that
enables, for the first time using an MLP, coupled analysis
of thermo-mechanical properties of CO2 hydrates with near-
DFT accuracy. The DP-MLP model is rigorously trained and
validated against DFT datasets while maintaining the com-
putational efficiency of classic MD simulations. Systematic
benchmarking against empirical water forcefields and DFT
confirms its unique capability to accurately reproduce both the
coupled mechanical and thermal transport characteristics of
CO2 hydrate. This framework provides a robust and transfor-
mative tool for advancing the fundamental understanding and
practical applications of hydrate-based CCS and refrigeration
technologies.

2. Models and methodology

2.1 Molecular model of CO2 hydrate
CO2 hydrate generally crystallizes in the structure I (sI)

clathrate form, with pm3̄n space group and a lattice param-
eter of a = 11.9 Å (Takeuchi et al., 2013). Its unit cell
contains 46 water molecules forming two small cages (12
pentagonal faces) and six large cages (12 pentagonal and 2
hexagonal faces), corresponding to an ideal stoichiometry of
8CO2·46H2O under full guest occupancy. The initial atomic
positions of the water framework are obtained from X-ray
diffraction data, and CO2 molecules are placed inside the cages
as guest species. The molecular and cage configurations of the
unit-cell of sI CO2 hydrate are illustrated in Fig. 1. The model
represents an idealized crystal structure with full guest occu-
pancy and no defects, enabling investigation of the intrinsic
mechanical and thermal properties of the CO2 hydrate as a
fundamental benchmark. It is noted that real-world systems
involve additional complexities such as formation kinetics,
polycrystallinity, and structural defects, which are beyond the
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scope of this study but represent important directions for future
research (Xia et al., 2025).

2.2 First-principles calculations and dataset
construction

A representative dataset for training a DP-MLP for CO2
hydrate is generated using first-principles calculations within
the framework of DFT, implemented in the Vienna Ab-initio
Simulation Package (Kresse and Furthmüller et al., 1996;
Hafner et al., 2008). The Kohn-Sham equations are solved
using the projector-augmented wave method with standard
pseudopotentials for O, H and C atoms. Exchange-correlation
interactions are treated with the Perdew-Burke-Ernzerhof func-
tional under the generalized gradient approximation, and van
der Waals interactions are included via Grimme’s DFT-D3
correction with zero damping. A plane-wave energy cutoff of
750 eV and a Γ-centered 3×3×3 k-point mesh are adopted.
The self-consistent field convergence threshold is set to 10−5

eV for total energy. Ionic relaxations are performed using the
conjugate gradient algorithm until the energy change between
successive steps is less than 10−5 eV, ensuring fully optimized
atomic configurations.

To enhance structural diversity, both 1×1×1 unit-cell and
1×1×2 supercells of sI CO2 hydrate are constructed. Initial
configurations of sI CO2 hydrate are first subjected to variable-
cell optimization to obtain fully relaxed baseline structures.
Uniaxial strain is subsequently imposed to these optimized
systems, with lattice vectors constrained in all directions, and
the resulting configurations are structurally re-optimized to
generate tensile deformation data. A strain range of 0-25% is
examined, with configurations sampled at 1% strain intervals.
Because structural failure typically occurs between 18% and
22% strain, this region is sampled more finely at 0.1%
intervals. All strained structures are thermally equilibrated
at 270 K for 0.5 ps, and parallel trajectories are generated
to improve conformational sampling. Additional heating MD
simulations are conducted in the NVT ensemble using a Nosé-
Hoover thermostat. For the unit cell model, heating from 250
to 270 K and from 250 to 300 K is performed at a heating
rate of 10 K/ps, while the supercell model is heated from
250 to 320 K under identical conditions. All DFT data are
rigorously processed and divided into training and test subsets
to ensure DFT-level fidelity. The resulting multi-conditional
dataset serves as the foundation for the subsequent DP-MLP
training and validation.

2.3 Implementation of the DP-MLP potential
The DP-MLP is implemented using the Smooth Edition

of the Embedded Atom Descriptor (SE-A) as provided in
DeePMD-kit (Wang et al., 2018; Zhang et al., 2020). A cutoff
radius of 6 Å and a smoothing cutoff parameter of 0.5 Å
are employed to comprehensively capture the atomic local
environments. The embedding network consists of three-layers
with 20, 50 and 100 neurons, respectively, to encode atomic
structural features. ResNet connections are incorporated to en-
hance the representational capability of the descriptor (Targ et
al., 2016). The fitting network is designed as three-layer fully

connected neural network with 240 neurons per layer, with
the ReLU activation function to improve non-linear modelling
capability. The training is performed using an exponential
decay learning rate schedule, starting from an initial value
of 0.001 and decaying every 5,000 steps. The loss function
includes both energy and atomic force components, with initial
weighting factors of 0.02 for energy and 1,000 for forces.
These weighting factors are dynamically adjusted during train-
ing until they reach a value of 1 for both components. The DP-
MLP is trained for 300,000 batches to ensure convergence and
numerical stability (Arora et al., 2016).

2.4 MD simulations
To characterize the mechanical properties, classic MD

simulations are performed on single-crystal CO2 hydrate with
a 3×3×3 supercell configuration. Periodic boundary conditions
are applied along the x, y, and z directions to maintain
system continuity. Prior to MD simulations, the initial hydrate
configuration is geometrically optimized. Subsequently, MD
simulations with 200,000 timesteps are performed under the
isothermal-isobaric (NPT) ensemble at 270 K and 1 bar.
Finally, uniaxial tensile deformation is applied along the z-
direction using a strain-controlled approach within NPT en-
semble. A strain rate of 108/s is set, which is typical for MD
simulations to observe deformation and failure within accessi-
ble timescales. The Poisson effect is considered to account for
lateral deformation accompanying the tensile loading. For ther-
mal conductivity evaluation, non-equilibrium MD (NEMD)
simulations employing the EHEX algorithm are performed on
a periodic CO2 hydrate structure composed of 2×2×10 unit-
cells. The system is first equilibrated for 200,000 timesteps
under the NPT ensemble at 270 K and 1 bar, followed by an
additional 200,000 timesteps under microcanonical ensemble.
The NEMD method establishes a heat flux by imposing a
temperature gradient across the system, driving it into a non-
equilibrium steady state. A constant temperature gradient is
maintained by introducing designated heat source and heat
sink regions, allowing measurement of the resulting heat flux.
The thermal conductivity k is determined from the relation:

k =
Jq

∇T
(1)

where Jq denotes the heat flux per unit cross-sectional
area, and ∇T represents the applied temperature gradient. A
timestep of 0.5 fs is used throughout all simulations to ensure
numerical stability and computational accuracy.

For comparative analysis, the DP-MLP potential is bench-
marked against four empirical water models including TIP4P
(Jorgensen et al., 1983), TIP4P/Ice (Abascal et al., 2005),
TIP4P/2005 (Abascal and Vega et al., 2005), and TIP4P/Ewald
(Horn et al., 2004). The TraPPE forcefield is employed for the
CO2 guest molecules (Potoff and Siepmann et al., 2001). Van
der Waals interactions are described using the standard 12-
6 Leonard Jones potential, while the long-range Coulombic
interactions are computed using the particle-particle-particle
method. All classic MD simulations are performed using large
scale atomic/molecular massively parallel simulators (Plimp-
ton et al., 1995).
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Fig. 2. Training error evolution during the optimization of the DP-MLP model: (a) Energy and force errors as a function of
training steps and (b-d) error distributions for energy, force, and virial stress compared with DFT reference.

3. Results and discussion

3.1 Benchmarking of the DP-MLP against DFT
The predictive accuracy and robustness of the developed

DP-MLP model are assessed by analyzing the loss function
evolution and comparing force error distributions with refer-
ence DFT data. Fig. 2(a) presents the convergence behavior
of energy and force errors during training. At the initial stage,
with randomly initialized parameters, the model exhibits errors
of 0.115 eV and 0.103 eV/Å for energy and forces, respec-
tively. Progressive training results in a systematic reduction
of quantities, ultimately reaching magnitudes on the order
of 10−5 eV for energy and 10−2 eV/Å for forces. These
low errors persist on the validation set, indicating strong
generalization capability and stable convergence. The obtained
error magnitudes represent a significant improvement over
typical empirical potentials, which often fail to simultaneously
minimize both energy and force errors. Figs. 2(b)-2(d) further
show the error distributions of energy, force, and virial com-
ponents relative to DFT calculations. The corresponding root-
mean-square errors are determined to 0.0186 eV, 0.0382 eV/Å
and 0.2230 eV/Å, respectively. These low deviations, achieved
at a fraction of the computational cost of full DFT calculations,
demonstrate the near-DFT accuracy of DP-MLP. The close
agreement between predicted and reference data confirm that
DP-MLP maintains numerical stability and reliability across

the training domain. Overall, DP-MLP exhibits robust pre-
dictive performance for energy, force, and virial quantities,
establishing a solid foundation for subsequent MD studies.

3.2 Analysis of radial distribution functions in
CO2 hydrate

Radial distribution functions (RDFs) provide essential in-
sights into the local atomic structure of sI CO2 hydrate
and serve as a critical benchmark for evaluating interatomic
potential accuracy. Analysis of the O-H, O-C, and H-C cor-
relations (Fig. 3) demonstrates variations in peak positions,
reflecting fundamental differences in how each potential rep-
resents interatomic interactions. In the O-H RDF (Fig. 3(a)),
the first peak corresponds to the covalent O-H bond within
water molecules. DP-MLP model predicts this bond length at
approximately 0.963 Å, closely matching the DFT value of
around 0.968 Å. This high degree of agreement indicates that
DP-MLP reliably captures intramolecular geometry of hydrate
framework. The second peak, associated with H-bonding inter-
actions, is located at around 1.76 Å for DP-MLP and empirical
models, in good agreement with the DFT result of around
1.78 Å. Medium- and long-range oscillations reflecting cage
geometry and lattice periodicity are also captured by DP-MLP,
confirming its accuracy in representing the H-bond network
and water cage integrity.

For the O-C RDF (Fig. 3(b)), which reflects both in-
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Fig. 3. RDFs of CO2 hydrate from TIP4P, TIP4P/Ice, TIP4P/2005, and TIP4P/Ewald empirical potentials, DP-MLP, and DFT.
(a) O-H RDF, (b) O-C RDF and (c) H-C RDF.

tramolecular C-O bonds in CO2 and guest-host interactions,
DP-MLP continues to show positional accuracy. The first peak,
representing the C-O covalent bond, appears at around 1.15 Å,
nearly identical to the DFT value of about 1.16 Å. The four
empirical models also capture this bond length accurately. The
second peak, corresponding to the nearest-neighbor distance
between water oxygen and CO2 carbon, is positioned by DP-
MLP at 3.85 Å, matching DFT exactly. This fidelity highlights
the capability of DP-MLP to represent guest-host separations
that govern vibrational coupling and thermal transport.

The H-C RDF (Fig. 3(c)) provides information on the
arrangement of water hydrogens around CO2 guests, which is
essential for understanding local cage packing and guest-host
interactions. The principal peak appears at approximately 3.78
Å for both DFT and DP-MLP, while the empirical potentials
slightly underestimate this distance (around 3.72 Å). This
further demonstrates the superior structural accuracy of DP-
MLP. The precise reproduction of key RDF features by DP-
MLP, especially the guest-host distances, is crucial as these
structural details directly influence the mechanical stability
and phonon-mediated thermal transport properties discussed
in subsequent sections.

Across all RDFs, DP-MLP consistently reproduces peak
positions with high accuracy, capturing bond lengths, guest-
host distances, and longer-range cage correlations. In contrast,
TIP4P-based empirical models display deviations in peak posi-

tions due to their fixed-form forcefields and limited flexibility.
DP-MLP therefore provides a robust and transferable rep-
resentation of interatomic interactions, essential for accurate
thermo-mechanical property predictions of CO2 hydrates in
applications such as energy storage, CO2 sequestration, and
natural gas recovery.

3.3 Mechanical responses
The stress-strain responses of crystalline CO2 hydrate

under uniaxial tension as obtained from various poten-
tials are presented in Fig. 4, including empirical potentials
(TIP4P/Ewald, TIP4P/Ice, TIP4P, TIP4P/2005) and DP-MLP,
as well as DFT as a reference. As indicated, DFT calcu-
lations establish the benchmark with the highest ultimate
tensile strength of approximately 1.20 GPa. DP-MLP closely
reproduces this value with a peak stress of 1.10 GPa. In
comparison, empirical TIP4P-type potentials exhibit deviation
in their predictions. Among these empirical models, TIP4P/Ice
and TIP4P/2005 predict intermediate strengths (around 1.00-
1.16 GPa), TIP4P/Ewald yields reduced strength (0.92 GPa),
and TIP4P produces the lowest value (0.75 GPa). This clear hi-
erarchy underscores the pronounced forcefield dependence of
tensile strength predictions, which DP-MLP mitigates through
its close approximation of DFT behavior.

The strain at which peak stress occurs, indicative of failure
initiation, also differentiates among potentials. The empirical
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tential, and DFT.

water potentials predict failure strains between 0.12-0.15,
while DP-MLP yields a slightly delayed peak at 0.16 strain,
which remains earlier than the DFT reference peak at 0.19
strain. These discrepancies reflect fundamental differences in
how each potential captures the progressive weakening of
H-bonded networks and water cage integrity under tensile
loading. Beyond the peak stress, post-yield behavior reveals
crucial contrasts in perceived material ductility. Both DFT and
DP-MLP exhibit a gradual stress delay beyond the maximum
stress, accompanied by a sustained load-bearing capacity over
a finite strain range, indicating a progressive failure involving
continued structural integrity after initial cage rupture. In
contrast, the empirical potentials tend to a rapid loss of
strength beyond the peak, implying a more brittle type of
failure.

The favorable performance of DP-MLP originates from its
training on comprehensive DFT datasets including strained and
thermally-perturbed states, enabling it to learn both equilib-
rium bonding and anharmonic deformation pathways. Unlike
fixed-form empirical potentials with rigid functional forms
and static parameters, DP-MLP adapts to local atomic envi-
ronments through many-body descriptions, yielding improved
accurate modeling of bond stretching, H-bond breaking, and
reformation processes. This flexibility allows DP-MLP to
better capture energy dissipation mechanisms and structural
evolution pathways that govern gradual failure and residual
strength retention. The ability to capture post-failure load-
bearing behavior is particularly important for predicting CO2
hydrate stability under external stress perturbations in both
natural and engineering settings. Although direct experimental
measurements of monocrystalline CO2 hydrate mechanical
properties are not available due to experimental challenges, the
predicted tensile strength of 1.10 GPa by DP-MLP falls within
the range of values reported for similar clathrate hydrates,
providing indirect validation of our mechanical predictions.

3.4 Thermal conductivity
The representative temperature gradient across the hy-

drate sample used for thermal conductivity evaluation is

shown in Fig. 5(a), while Fig. 5(b) compares the ther-
mal conductivities of CO2 hydrate at 270 K using four
empirical potentials of TIP4P, TIP4P/2005, TIP4P/Ewald,
and TIP4P/Ice, as well as as-developed DP-MLP, with val-
ues of 0.8814±0.05716 W/(m·K), 0.4813±0.05201 W/(m·K),
0.5485±0.01721 W/(m·K), 1.076±0.08404 W/(m·K) and
0.6690±0.04316 W/(m·K), respectively. The reported uncer-
tainties represent the standard deviation from ten independent
simulation runs, ensuring statistical significance. To validate
the developed DP-MLP model, the thermal conductivity by
DP-MLP is compared with experimental measurements. DP-
MLP predicts a value of 0.6690±0.04316 W/(m·K), in excel-
lent agreement with the experimental result of around 0.6580
W/(m·K) reported by (Wan et al., 2016), with only 1.67%
deviation. This deviation is substantially smaller than those ob-
served with the empirical potentials, which range from approx-
imately -27% to +64%, underscoring the superior accuracy of
DP-MLP for predicting thermal transport properties. The quan-
titative superiority of DP-MLP is evident when comparing the
deviation from the experimental value (Wan et al., 2016), with
DP-MLP (+1.67%), TIP4P/Ice (+63.5%), TIP4P (+34.0%),
TIP4P/Ewald (-16.6%), TIP4P/2005 (-26.9%), respectively. As
a result of their fixed mathematical forms with a limited
number of parameters and fitting strategies, water empirical
potentials exhibit certain limitations in predicting thermal
conductivity of CO2 hydrate, which are unable to fully capture
interatomic interactions during atomic motion and bonding
(Martinez et al., 2013; Xie et al., 2023; Sun et al., 2025).

3.5 Vibrational dynamics
Thermal transport in clathrate hydrates is predominantly

governed by phonon-mediated mechanisms, making the char-
acterization of vibrational properties and atomic dynamics
essential for understanding thermal conductivity. The velocity
autocorrelation function (VACF) and phonon density of states
(PDOS) provide critical insights into the phonon behavior
and energy distribution within the crystal lattice (Dickey and
Paskin et al., 1969). These analyses allow evaluation of the ac-
curacy of various potential models to capture the fundamental
vibrational characteristics that influence heat transfer. Here,
the VACF (C(t)) is calculated as follows:

C(t) =
1
N

N

∑
i=1

⟨vi(0)vi(t)⟩ (2)

where Vi (t) and N are the velocity vector of particle i at time
t and the total number of atoms in the hydrate system. The
ensemble average <> is obtained by sampling velocities at
regular intervals during the simulation period and averaging
over time origins. The PDOS (g(ω)) is derived from the
Fourier transform of the VACF:

g(ω) =
∫

∞

−∞

eiωtC(t)dt (3)

where ω is the vibration frequency. Here, the simulations span
a period of 2.5 ps, with atomic velocities sampled every 0.5 fs.
As the VACF is normalized, the PDOS is expressed in units
of THz−1.

The VACF and PDOS profiles of CO2 hydrate obtained
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Fig. 6. (a) VACF and (b) PDOS of CO2 hydrate computed with TIP4P, TIP4P/2005, TIP4P/Ewald, and TIP4P/Ice empirical
potentials and DP-MLP model.

from the four empirical potentials and the DP-MLP model are
compared in Fig. 6. As shown in Fig. 6(a), the VACF curves,
which indicate dynamical stability, exhibit comparable oscilla-
tory behavior and decay rates across all models, converging to
zero after approximately 0.5 ps, indicating the system stability.
In contrast, notable discrepancies appear in the PDOS spectra
(Fig. 6(b)). DP-MLP model yields a higher first peak below
10 THz and reduced intensity near 17 THz compared to
empirical potentials. While low-frequency regions (< 30 THz)
remain consistent across models, DP-MLP spectrum shows
broader and upshifted peaks at higher frequencies, indicating
phonon mode hardening and more accurate representation of
high-frequency vibrational modes. These differences in PDOS,
particularly the enhanced high-frequency content in DP-MLP,
are consistent with its more anharmonic potential energy
surface and relate directly to variations in predicted thermal
conductivity and mechanical failure behavior, as these vibra-
tional modes contribute to energy dissipation and scattering.

To elucidate element-specific dynamics, Fig. 7 presents
the VACF and PDOS curves decomposed into atomic con-
tributions (C, H and O). The DP-MLP model consistently
yields lower VACF amplitudes (Figs. 7(a)-7(e)), suggesting
more damped atomic motion. The comparison of PDOS

curves (Figs. 7(d)-7(f)) reveal similar profiles for O- and C-
atoms across models, consistent with the dominant role of H-
bonded network in thermal transport. However, the H-PDOS
(Fig. 7(e)) under DP-MLP model displays enhanced high-
frequency contributions despite agreement with empirical po-
tentials at lower frequencies. This indicates that DP-MLP more
comprehensively captures high-frequency vibrational behavior,
improving the representation of atomic dynamics across the
entire spectral range.

3.6 Analysis of phonon localization via phonon
participation rate

To gain deeper insight into phonon behavior and quantita-
tively assess phonon localization, which is key to understand-
ing thermal transport mechanisms in CO2 hydrate, the phonon
participation rate (PPR) is evaluated (Liang et al., 2020; Zhou
et al., 2020; Xu et al., 2022). The PPR helps distinguish
between extended and localized vibrational modes, providing
essential information about phonons contributions to heat con-
duction. Without requiring full lattice dynamics calculation,
the PPR at a given temperature can be directly obtained from
MD simulations using (Bell and Dean et al., 1970; Liang et
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Fig. 7. Element-resolved vibrational properties of CO2 hydrate: (a-c) VACF curves for C, H, and O atoms under TIP4P,
TIP4P/2005, TIP4P/Ewald, and TIP4P/Ice empirical potentials and DP-MLP model and (d-f) PDOS spectra for C, H, and O
atoms under TIP4P, TIP4P/2005, TIP4P/Ewald, and TIP4P/Ice empirical potentials and DP-MLP model.

al., 2020; Li et al., 2025):

P(ω) =
1
N

(
∑i gi(ω)2

)2

∑i gi(ω)4 (4)

where P(ω) represents the PPR at frequency ω , and gi(ω)
denotes the PDOS of atoms i at frequency ω . The PPR
is computed for C-, H-, and O-atoms using both empirical
potentials and the DP-MLP model. As shown in Fig. 8(a),
the C-atomic PPR values obtained by DP-MLP exceeds that
of empirical potentials below 30 THz, but falls below them
at higher frequencies. This implies that empirical potentials
describe C-phonon modes as more delocalized, while the DP-
MLP model indicates stronger delocalization at lower frequen-
cies. Given that C-atoms originate from guest CO2 molecules,
these differences highlight variations in the treatment of guest-
host and guest-guest interactions between empirical potentials
and DP-MLP.

For H-atoms (Fig. 8(b)), DP-MLP exhibits more extended
phonon characteristics in the 0-10 THz and 35-100 THz
ranges, but higher localization within 10-35 THz. For O-atoms
(Fig. 8(c)), DP-MLP model shows stronger delocalization
at high frequencies (55-100 THz). Since H- and O-atoms
constitute the hydrate framework, these results indicate that
DP-MLP captures more extended phonon modes at both low-
(0-10 THz) and high frequencies, while empirical potentials
yield greater delocalization within 10-35 THz.

These discrepancies arise because empirical potentials rely
on fixed potential forms parameterized for specific interactions
(Martinez et al., 2013; Xie et al., 2023; Sun et al., 2025),
while DP-MLP is trained on datasets derived from the DFT
datasets, whose size and quality directly impact the accuracy of
high-frequency vibrational modes. The PPR results thus reflect
pronounced differences in atomic dynamics, with DP-MLP
offering a more detailed account of high-frequency phonon
behavior. The distinct PPR profiles underscore different phys-
ical pictures. DP-MLP suggests strongly coupled guest-host
dynamics at low frequencies and framework-dominated ex-
tended modes at very high frequencies, with implications
for frequency-dependent phonon scattering rates and thermal
conductivity.

3.7 Spectral energy density and phonon
dispersion

To further elucidate lattice dynamics and phonon transport
properties of CO2 hydrate, the spectral energy density (SED) is
computed (Li et al., 2023; Ying et al., 2023; Zeng et al., 2024).
The SED provides a spatial and frequency-resolved repre-
sentation of vibrational energy distribution, offering valuable
insights into phonon dispersion and scattering behavior. The
SED Φ is a function of wave vector and frequency , and is
calculated as (Thomas et al., 2010; Liang et al., 2025):
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Fig. 8. Atomic phonon participation rate (PPR) for CO2 hydrate. (a) C-PPR, (b) H-PPR and (c) O-PPR.

Φ(⃗k,ω) =

1
4πτ0N ∑

α,b
mb

∥∥∥∥∥
∫ t0

0
∑
N

να(N,b)× exp
[
i⃗k · r⃗(N,0)− iαt

]
dt

∥∥∥∥∥
2

(5)
where t0, mb and va are the integration time, the mass of atom
b, and the atomic velocity along the a direction in the N cell.
In addition, r⃗ represents the equilibrium position vector of the
atom, and i denotes the imaginary number.

The SED of CO2 hydrate computed using empirical po-
tentials and DP-MLP is presented in Fig. 9. It is observed
that in the low-frequency range of 0-1 THz, both empirical
potentials and DP-MLP exhibit clear and comparable numbers
of acoustic branches, indicating similar predictions of hydrate
stability. At higher frequencies, optical branches overlap sig-
nificantly due to the complex atomic structure of the hydrate
system. While phonon spectra show considerable similarity de-
spite differences in interatomic potential formulations between
empirical potentials and DP-MLP.

As shown in Fig. 9, the acoustic branches in the SED
spectrum derived from DP-MLP exhibit broader and more
diffuse profiles compared to the distinct linear features in
empirical potentials. Quantitatively, DP-MLP results show a
full-width-at-half-maximum for the acoustic branches that is
approximately twice that observed in empirical potentials,
indicating significantly stronger phonon scattering. Given that
clathrate hydrates are inherently disordered, dynamic sys-
tems with strong anharmonicity (Schober et al., 2003; Tse
et al., 2005; Udachin et al., 2007; Arora et al., 2016), the
enhanced broadening and nonlinearity in DP-MLP results
reflect more pronounced phonon scattering at low-frequencies.

This suggests that DP-MLP model more effectively captures
strong scattering effects and complex interatomic interactions
characteristic of hydrate system. In contrast, empirical poten-
tials, due to their inherent limitations in representing H-bond
rigidity and atomic disorder, tend to underestimate atomic
disorder and anharmonicity effects, leading to less pronounced
scattering features in SED spectra.

3.8 Phonon lifetime
To further understand the phonon scattering behavior and

thermal transport properties, phonon lifetimes are calculated.
Phonon lifetime serves as a critical indicator of phonon
scattering intensity and provides direct insight into the thermal
resistance mechanisms. The lifetime corresponding to a spe-
cific phonon mode is obtained by fitting the SED peak with a
Lorentzian function (Zhou et al., 2020):

Φ(⃗k,ω) =
I

1+[(ω −ωc)/g]2
(6)

where I represents the peak amplitude of the SED and ωc
is the frequency of the peak center. g denotes the half width
of the half-peak. The phonon lifetime at frequency ω is then
given by t = 0.5g.

The phonon lifetimes in CO2 hydrate obtained from em-
pirical potentials and DP-MLP are shown in Fig. 10. Phonon
lifetimes computed using DP-MLP are systematically shorter
than those obtained from empirical potentials, particularly
in the low-frequency range of 0-1 THZ. This frequency
region is critical as acoustic phonon branches dominate the
thermal transport properties of the hydrate system. The re-
duced lifetimes indicate stronger phonon scattering in DP-
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Fig. 9. Spectral energy density (SED) of CO2 hydrate computed using different potential models. (a) TIP4P/2005, (b)
TIP4P/Ewald, (c) TIP4P and (d) TIP4P/Ice and (e) DP-MLP. DP-MLP model (e) shows notably broader and less distinct
acoustic branches below 2 THz, signifying enhanced phonon scattering compared to the sharper branches in empirical potentials.

MLP, consistent with broader SED profiles observed in Fig.
9. The reduced lifetimes calculated from DP-MLP can be
attributed to its more comprehensive description of disorder-
induced and anharmonic scattering mechanisms. By more
accurately capturing the complex interatomic interactions, DP-
MLP reveals enhanced phonon scattering that impedes heat
transfer, leading to the observed reduction in phonon lifetimes.
In contrast, empirical potentials, with similar functional forms,
tend to underestimate these scattering effects. The consistently
shorter phonon lifetimes predicted by DP-MLP, especially for
heat-carrying low-frequency acoustic phonons, provide a direct
microscopic explanation for its prediction of lower thermal
conductivity that agrees well with experiments, contrasting
with overestimation by empirical potentials.

Therefore, the DP-MLP potential offer several distinct
advantages. First, it preserves phonon thermal transport prop-
erties and atomic dynamic behavior consistent with empirical
potentials in thermal conductivity calculations. Second, it
captures atomic vibrations over an extended frequency range,
including high-frequency modes, while maintaining improved
stability. Most importantly, it more faithfully represents strong
scattering effects resulting from atomic disorder and system
anharmonicity, thereby offering a more physically realistic
representation of complex intermolecular interactions in CO2
hydrate.

3.9 Correlating mechanical, thermal, and
vibrational properties

The integrated analysis of mechanical response, thermal
transport, and vibrational dynamics reveals consistent picture
of superior physical fidelity of DP-MLP. The accurate pre-
diction of progressive ductile-like failure under tension by
DP-MLP is intrinsically linked to its realistic portrayal of
H-bond network anharmonicity, evidenced by broader SED
profiles and enhanced high-frequency contributions in the
H-PDOS. This anharmonicity facilitates energy dissipation
through phonon scattering mechanisms that also governs ther-
mal conductivity. The shorter phonon lifetimes and broader
SED peaks predicted by DP-MLP directly correlate with

its prediction of lower, more accurate thermal conductivity
compared to most empirical potentials. Furthermore, element-
specific phonon participation rates indicate that DP-MLP
captures stronger coupling between guest molecules and host
water cage, influencing both mechanical stability and phonon
scattering processes. These interconnected findings demon-
strate that DP-MLP not only improve individual property pre-
dictions but provides a coherent, multi-faceted description of
CO2 hydrate systems where mechanical and thermal properties
emerge from unified representation of underlying interatomic
interactions.

4. Conclusions
In summary, a DP-MLP was developed and validated

specifically for CO2 hydrate. The DP-MLP model demonstrate
good fidelity in reproducing DFT benchmarks for energies,
forces, virial stresses, and RDFs. When applied in large-
scale MD simulation, DP-MLP revealed stress-strain behav-
ior consistent with DFT predictions, including elastic strain
range, tensile strength, and ductile-like post-failure response.
In addition, NEMD simulations produced thermal conductiv-
ity values in near-quantitative agreement with experimental
measurements, demonstrating reliability of DP-MLP model
for heat transport studies. Analyses of vibrational dynamics,
PDOSs, and SED confirmed that DP-MLP more realistically
represents anharmonic effects, phonon scattering, and high-
frequency vibrational modes compared with empirical poten-
tials. These results establish DP-MLP as a robust and efficient
surrogate for first-principles methods, enabling accurate and
scalable exploration of CO2 hydrate mechanics and thermal
transport. The integrated analysis demonstrates that DP-MLP
provides a physically consistent descriptions across mechan-
ical, thermal, and vibrational properties, capturing intrinsic
coupling between these phenomena in hydrate systems. This
framework provides a powerful computational foundation for
advancing hydrate-based CCS and refrigeration technologies.
The accuracy and efficiency of DP-MLP open avenues for
future studies on more complex and realistic hydrate sys-
tems, including those with defects, impurities, or under non-
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Fig. 10. Phonon lifetimes in CO2 hydrate. (a) Phonon lifetime as a function of frequency and (b) distribution profiles of phonon
lifetime under TIP4P, TIP4P/2005, TIP4P/Ewald, and TIP4P/Ice empirical potentials, and DP-MLP model.

equilibrium conditions.
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