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Abstract:

Conventional slickwater fracturing fluids undergo severe thermal degradation in high-
temperature reservoirs, significantly impairing their drag reduction efficiency and proppant
transport capability. To address this limitation, this study presents a novel temperature-
resistant slickwater system by incorporating aminated nano-silica with an acrylamide-2-
acrylamido-2-methylpropane sulfonic acid copolymer and a flowback aid/clay stabilizer.
Macroscopic experiments and molecular dynamics simulations reveal that the system
achieves a drag reduction rate of 69.7% at 150 °C, a 10-percentage-point improvement over
the non-reinforced system. It also reduces the proppant settling area by 21.2%, facilitating
more uniform proppant distribution toward the fracture distal end, and retains 77.8% of its
initial viscosity after thermal aging. Nanoparticles in the system exhibit a synergistic dual-
reinforcement mechanism: Their surface adsorption smooths wall roughness and thickens
the elastic boundary layer, suppressing turbulence and mitigating energy dissipation; hydro-
gen bonding and electrostatic interactions between the amino groups of nanoparticles and
the moieties of copolymer form an interfacial network, effectively restricting the segmental
mobility of the copolymer. This method increases the glass transition temperature of
the system by 57.5 °C, markedly enhancing its thermal stability. Molecular simulations
confirm an 18.7% increase in hydrogen bond density and a 23.5% reduction in segmental
mobility, collectively stabilizing the polymer against thermal degradation. This study
provides valuable insights for developing high-performance fracturing fluids suitable for
deep reservoirs.

1. Introduction

favored for their low drag and ability to induce complex

Shale reservoirs, characterized by low porosity and ultra-
low permeability, have small natural productivity (Tao et
al., 2023). Consequently, large-scale volume fracturing is
essential to generate complex fracture networks and establish
effective seepage pathways for commercial exploitation (Lei
et al., 2023; Wang et al., 2024). Slickwater fracturing fluids,

fractures, dominate shale reservoir development (Zhang et
al., 2025a). However, as fracturing operations target deeper
reservoirs, the thermal vulnerability of conventional slickwater
systems becomes increasingly prominent (Li et al., 2021). At
elevated temperatures (> 90 °C), core polymer drag reduc-
ers undergo main-chain scission and side-group degradation,
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significantly impairing drag reduction efficiency and viscosity
(Xiong et al., 2018; Zhao et al., 2024; Zuo et al., 2025).
This degradation not only limits the effective treatment radius
but also increases the risk of premature proppant settling and
fracture channel blockage, severely compromising stimulation
outcomes (Yang et al., 2019; Zhang et al., 2019). Thus, heat-
resistant slickwater fracturing fluids are in critical demand for
deep reservoir exploitation.

Nano-silica offers a promising solution to these challenges.
By forming nanocomposite systems with polymer drag re-
ducers, it remarkably enhances the high-temperature drag
reduction and proppant transport performance of slickwater
fracturing fluids (Giraldo et al., 2017; Hu et al., 2019; Liu
et al., 2020; Zhang et al., 2025b). Previously proposed ther-
mostabilizing mechanisms include (Cao et al., 2018; Haruna
et al., 2020; Liu et al., 2021; Yuan et al., 2023): (1) The high
specific surface area of nano-silica facilitates polymer chain
adsorption onto its surface, forming a “boundary layer” that
restricts the thermal motion of polymer segments; (2) surface-
functionalized groups interact with polymer molecules via
hydrogen bonding, electrostatic forces, and covalent linkages,
ensuring the uniform dispersion of nano-silica within the
polymer network to reinforce structural integrity and dissipate
thermal energy; and (3) surface hydroxyl groups scavenge ther-
mally generated free radicals (e.g., hydroxyl and methylene
radicals), thereby retarding degradation chain reactions. De-
spite these advances, the dynamic enhancement mechanisms
of nanoparticles in turbulent flow fields and their molecular-
level interactions with polymers remain rarely studied.

To bridge the above research gap, this study introduces a
supramolecular-engineered nanocomposite system integrating
aminated nano-silica with copolymer of acrylamide and 2-
acrylamido-2-methylpropane sulfonic acid, and systematically
investigates its performance via experimental and molecular
theoretical approaches. Specifically, a novel nanocomposite
slickwater fracturing fluid (Slickwater-NPAS) is proposed. By
leveraging supramolecular interactions, this system achieves
enhanced drag reduction and proppant transport performance
under high-temperature conditions. The enhancement mech-
anisms of nanoparticles on the performance of slickwater
fracturing fluid are elucidated through a combination of macro-
scale testing (drag reduction efficiency, dynamic proppant
transport capacity, and viscosity measurements), microstruc-
tural characterization (scanning electron microscopy and par-
ticle image velocimetry), and molecular dynamics simulations.
The findings of this study provide critical insights for de-
veloping high-performance fracturing fluids tailored for deep
reservoir applications.

2. Materials and methods

2.1 Materials

NPAS was formulated by incorporating 20.0 wt% amino-
grafted nano-silica into PAS (Ding et al., 2023), a copoly-
mer of acrylamide and 2-acrylamido-2-methylpropane sulfonic
acid. JHFR-1 and JHFR-2 are two water-in-water emulsion
drag reducers (Jingzhou Modern Petroleum Technology Devel-
opment Co., Ltd., Jingzhou, China). JHFR-2D is a multifunc-
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tional additive acting as both a flowback aid and clay stabilizer
(Jingzhou Modern Petroleum Technology Development Co.,
Ltd., Jingzhou, China). Quartz sand with particle sizes of 40-
70 mesh (density: 1.45 g/cm?) and 70-140 mesh (density: 2.02
g/cm?) was used as the proppant (Lingshou Huachen Mineral
Products Trading Co., Ltd., Shijiazhuang, China). NaCl, KCI,
MgCl,, and CaCl, were commercially purchased (Shanghai
Macklin Biochemical Technology Co., Ltd., Shanghai, China).
The standard brine (total salinity 82,612.0 mg/L) consisted of
2.0 wt% KCI, 5.5 wt% NaCl, 0.45 wt% MgCl,, and 0.55
wt% CaCl,. The simulated formation water (total salinity
57,249.0 mg/L) had the following ionic composition: 20,800
mg/L (Na*+K*), 1,202 mg/L Ca®*, 159 mg/L Mg?*, 34,421
mg/L Cl-, and 62 mg/L SO4>~.

2.2 Preparation of slickwater fracturing fluids

The slickwater fracturing fluids developed in this study
(Slickwater-PAS and Slickwater-NPAS) consisted of a drag
reducer (PAS or NPAS, respectively; typically, at a concen-
tration of 0.10 wt%) and the additive JHFR-2D. For drag
reduction and rheological performance tests, the drag reducer
concentration was adjusted according to the experimental
requirements, while the dosage of JHFR-2D was kept constant
at 0.2 vol% across all formulations.

2.3 Characterizations

2.3.1 Microscopic morphology of aminated nano-silica
particles

The morphology of aminated nano-silica particles was
characterized using transmission electron microscopy (TEM)
(JEM2100plus, JEOL Ltd., Tokyo, Japan). Briefly, an ethanol
dispersion of the nanoparticles was prepared and ultrasonically
treated for 30 min to ensure uniform dispersion. An aliquot
of the dispersion was pipetted onto a copper grid, air-dried
under ambient conditions to prepare the TEM sample, and
then imaged via TEM.

2.3.2 Hydrodynamic radius of aminated nano-silica
particles

The hydrodynamic radius of the nanoparticles was
measured via dynamic light scattering (DLS) (Omni-1,
Brookhaven Instruments Corporation, New York, America).
For sample preparation, the aqueous nanoparticle solution
was ultrasonically agitated and filtered through a 0.22 pm
microporous membrane to remove agglomerates. A suitable
volume of the filtered solution was transferred into a clean
DLS sample cell using a micropipette, followed by DLS
measurement.

2.3.3 Microscopic morphology of Slickwater-NPAS

The microscopic morphology of Slickwater-NPAS was
observed via atomic force microscopy (AFM) (Multimode 8§,
Bruker Co., Ltd., Saarbrucken, Germany). Slickwater-NPAS
was prepared at the designed concentration, and an appropriate
amount was deposited onto a mica sheet to form a thin film.
The sample was freeze-dried for 24 h (SCIENTZ-10N, Ningbo
Xinchi Biological Technology Co., Ltd., Ningbo, China). AFM
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Fig. 1. Schematic diagram of the drag reduction rate testing process.
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Fig. 2. Schematic diagram of (a) microflow field distribution testing, (b) physical image of PMMA plate and (c) schematic

diagram of microchannel.

imaging was performed in tapping under ambient conditions
(25 °C, 30% relative humidity).

2.3.4 Drag reduction performance

Drag reduction performance was evaluated using a high-
temperature/high-pressure drag resistance tester (CQJZ-DM,
Jiangsu Huaan Scientific Instruments Co., Ltd., Nantong,
China). This system measures the pressure drop (AP) along
a 4.5 m test section. The drag reduction rate (DR, %) was
calculated using the following equation (Jouenne et al., 2015;
Ibrahim et al., 2018):

APy — AP
DR = AR x 100 (1)

0
where APy and AP, denote the pressure drops for fresh water

and the drag reducer solution, respectively, and a higher DR
indicates superior drag reduction efficiency. A schematic of
the testing setup is shown in Fig. 1.

Particle Image Velocimetry (LaVision, Gottingen, Ger-
many) was performed to visualize flow patterns in a mi-
crochannel with triangular obstacles (Fig. 2(a)) (Xu et
al., 2023). The microchannel was fabricated on a polymethyl
methacrylate (PMMA) plate (Fig. 2(b)). A triangular obstacle
(leg length: 2.52 mm; base length: 0.6 mm) was designed to
induce turbulence (Fig. 2(c)), where the imaging area (400 wm
x 400 pum) is marked by a red box.

2.3.5 Rheological viscosity

The viscosity of the slickwater fracturing fluids was
measured using a high-temperature/high-pressure rheometer
(HAAKE MARS 60, Thermo Fisher Scientific, Waltham,
USA).

2.3.6 Proppant transport performance

A visual plate fracture model (1.2 m x 50 cm x 6
mm) was used to characterize the dynamic proppant dis-



156

Ding, F, et al. Advances in Geo-Energy Research, 2025, 18(2): 153-164

= Blender

Sand transport pump
Mixing tank

Pressure sensor

Visualized flat plate

Sand settling tank

Electric

valve Flowmeter

Software

system

Screw pump wellbore

High-speed camera

Fig. 3. Flow schematic of dynamic proppant transport experimental equipment.

tribution under flow conditions (CQJZ-DM, Jiangsu Huaan
Scientific Instruments Co., Ltd., Nantong, China) (Alotaibi
and Miskimins, 2018; Isah et al., 2021). The proppant settling
area and bank height were quantified via image processing
techniques. All test fluids were thermally aged at 150 °C for
2 h prior to testing. A photograph of the physical apparatus
and a flow schematic are presented in Fig. 3, respectively. The
proppant concentrations (5 vol% and 15 vol%) and particle
sizes (40-70 mesh and 70-140 mesh) employed in this study
were referenced to the sand concentrations and proppant
particle sizes of field-scale. Additionally, the flow rates used
in the experiments were determined by simulating the linear
velocity of fracturing fluids under field conditions, performed
in accordance with similarity criteria.

2.3.7 Temperature resistance properties

The DR of Slickwater-PAS and Slickwater-NPAS under
different temperature conditions were determined using a high-
temperature/high-pressure drag resistance tester.

The viscosity of the slickwater fracturing fluids at various
temperatures was measured using a high-temperature/high-
pressure rheometer. The viscosity retention rate (Mg) was
calculated using:

e = L % 100% )
Mo
where 719 and 17 denote the viscosities measured at 30 °C
and elevated temperatures, respectively.

Field emission scanning electron microscopy (Quanta
FEG250, FEI, USA) was used to observe the microstructure
of the samples. The slickwater fracturing fluids were thermally
aged in an oven at 150 °C for 2 h. After cooling, the samples
were freeze-dried for 48 h. Prior to imaging, they were sputter-
coated with gold to enhance conductivity.

2.4 Molecular dynamics simulations

Molecular dynamics simulations were performed using
Materials Studio software with the COMPASS force field.
Newton’s equations of motion were integrated via the Velocity
Verlet algorithm. All simulations were conducted under the
NPT ensemble (constant number of particles, pressure, and
temperature), where temperature and pressure were controlled
by the Nosé-Hoover thermostat and Berendsen method, re-

spectively. Van der Waals interactions were calculated using an
atom-based method with a cutoff radius of 12.5 A, while long-
range electrostatic interactions were handled via the Ewald
summation method. The simulation time step was set to 1 fs,
and trajectories were recorded every 1 ps. Periodic boundary
conditions were applied along all directions (x, y, and z axes).

The initial PAS and NPAS models were subjected to NPT
ensemble simulations as follows: first, simulations were run at
108 K and 1 MPa for 1,000 ps, followed by heating to 900 K
for 3,000 ps. Subsequently, the systems were cooled stepwise
to 300 K at a rate of 25 K per 1,000 ps. For each temperature
step, the last 100 ps of the trajectory was analyzed to de-
termine the volume and dynamic properties of the systems.
This entire simulation procedure was repeated three times
using reconstructed models, and the results were averaged to
ensure statistical reliability. Mean square displacement (MSD)
analysis is a key method for characterizing polymer segmental
mobility. The MSD of the polymer chains in PAS and NPAS
was calculated over a 200 ps duration at 600 K.

3. Results and discussion
3.1 Preparation of Slickwater-NPAS

Slickwater fracturing fluid is primarily composed of water
(> 99.0 wt%) and minor chemical additives (< 1.0 wt%) (Fig.
4(a)), with the drag reducer serving as its core component.
During fracturing operations, large volumes of fluid invade
the formation matrix through the fracture network under cap-
illary forces and become trapped. This can induce formation
damage via mechanisms such as fluid retention and clay
swelling, impairing well productivity. Consequently, flowback
is required to remove the fluid. Incorporating a flowback aid
effectively reduces the fluid’s surface and interfacial tension,
facilitating flowback. Additionally, the hydration and swelling
of rock minerals upon contact with water may cause pore-
throat constriction and particle detachment/migration, further
exacerbating formation damage.

This study employs slickwater fluid systems (Slickwater-
PAS or Slickwater-NPAS) consisting of a drag reducer (either
PAS or NPAS) and a multifunctional additive, JHFR-2D,
which acts as both a flowback aid and clay stabilizer (Fig.
4(a)). PAS is an emulsion copolymer of acrylamide and
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Fig. 4. Appearance of (a) PAS, NPAS and JHFR-2D, (b) TEM image and (c) hydrodynamic radius distribution of aminated

nano-silica particles.

2-acrylamido-2-methylpropane sulfonic acid synthesized via
aqueous two-phase polymerization. NPAS differs from PAS
by incorporating aminated modified nano-silica (Fig. 5(a)), the
nano-silica has a particle size of 10-20 nm (Fig. 4(b)) and a
hydrodynamic radius Dsg of 41.99 nm (Fig. 4(c)).

The microscopic morphology of Slickwater-NPAS was
observed via AFM. In the image, brightness corresponds to
the adsorption height of the sample on the mica sheet surface,
with higher indicating greater height. Low-magnification AFM
images (Figs. 5(b) and 5(d)) reveal numerous high-contrast
features. Corresponding high-magnification images (Figs. 5(c)
and 5(e), showing the blue boxed regions in Figs. 5(b) and
5(d), respectively) demonstrate that the strip-like structures
are nanoparticle aggregates uniformly dispersed in Slickwater-
NPAS. This confirms the successful synthesis of NPAS, con-
sistent with our previous study (Ding et al., 2023).

3.2 Drag reduction performance

During injection, significant turbulence in fracturing fluid
dissipates kinetic energy, thereby reducing the energy avail-
able for effective reservoir fracturing. Polymer drag reducers
mitigate turbulence, substantially decreasing drag in extended
wellbores.

Drag reduction arises from interactions between polymers
and turbulent eddies, with its efficiency highly dependent on
molecular concentration and aggregation state (Dunlop and
Cox, 1977; Shetty and Solomon, 2009). For both Slickwater-
PAS and Slickwater-NPAS, DR increased significantly with
concentration up to 0.10 vol%, rising from 61.3% and 63.5%
at 0.025 vol% to 74.4% and 76.1% at 0.10 vol%, respectively

(Figs. 6(a) and 6(b)). Beyond this concentration, DR plateaued,
which can be attributed to three factors: (1) an insufficiency of
drag reducer molecules to suppress eddies effectively at low
concentrations; (2) enhanced eddy suppression and increased
DR with rising concentration; (3) molecular entanglement at
excessive concentrations, which restricts chain extension and
limits further DR improvements.

Cations in the formation fluids (e.g., Na*, Ca®*) or ad-
sorbed on the rock surface can interact electrostatically with
functional groups of fracturing fluid additives. This interaction
may alter molecular conformation or induce charge shielding,
potentially impairing performance. Fig. 6(c) compares the DR
values in tap water, simulated formation water, and standard
brine. It can be seen that DR decreases with increasing salinity:
initial values were 75.5%, 74.7%, and 73.9%, dropping to
74.3%, 72.7%, and 72.2% after 5 min of shearing, and
further to 70.5%, 69.2%, and 68.5% after 10 min. Notably,
the effective drag reduction performance is maintained even
in high-salinity brine. This can be ascribed to the strong
electrostatic repulsion from sulfonic acid groups in molecular
chains of NPAS, coupled with steric hindrance from the bulky
side chains of AMPS. These two factors collectively suppress
molecular chains curling.

The enhancing effect of nanoparticles on drag reduction
efficiency was further investigated using Particle Image Ve-
locimetry to characterize flow distribution. Flow patterns were
visualized in a microchannel with turbulence-inducing triangu-
lar obstacles. In fresh water, flow separation with pronounced
recirculation zones was observed near the walls, yielding an
average velocity of 0.17 m/s (Figs. 6(d), 6(e), and 6(f)).
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Slickwater-PAS exhibited an extended flow field coverage
with wall-convergent structures, achieving a higher average
velocity of 0.37 m/s (Figs. 6(g), 6(h), and 6(i)). Slickwater-
NPAS demonstrated the most homogeneous velocity distribu-
tion (Figs. 6(j), 6(k), and 6(1)), reaching the highest average
velocity of 0.48 m/s. These PIV results quantitatively confirm
the superior turbulence suppression capability of nanoparticles,
which directly correlates with the enhanced macroscopic drag
reduction observed (Asidin et al.,, 2019; Xi, 2019; Ou et
al., 2024).

3.3 Rheological viscosity

Low-viscosity fracturing fluids facilitate the formation of
highly complex fracture networks. This is because higher
viscosity increases flow resistance within fractures, hindering
deep penetration and reducing effective coverage. Conse-
quently, optimizing slickwater viscosity is a critical task.

Figs. 7(a), 7(b) and 7(c) depict the viscosity-time profiles
of slickwater fracturing fluids formulated with PAS and NPAS
at different concentrations, measured at a shear rate of 170

s~! and 25 °C. Viscosity increased with drag reducer concen-
tration but remained low (< 26.0 mPa-s at 2.0 vol%). This
increase stems from enhanced polymer chain entanglement
density and network formation (Kulicke et al., 1982; Ghannam
and Esmail, 1998). Notably, Slickwater-NPAS consistently
exhibited higher viscosity than Slickwater-PAS at the same
concentration, with the viscosity difference increasing as con-
centration rose (from 0.3 mPa-s at 0.1 vol% to 2.5 mPa:s
at 2.0 vol%). This enhancement is attributed to increased
nanoparticle loading, which strengthens hydrogen bonding and
electrostatic interactions, thereby expanding the hydrodynamic
volume of the polymer network (Yegane et al., 2020; Xu et
al., 2022).

Figs. 7(d), 7(e) and 7(f) present the viscosity-shear rate
curves of Slickwater-PAS and Slickwater-NPAS at 25 °C. Both
systems displayed typical shear-thinning behavior: Viscosity
decreased initially and then plateaued as the shear rate in-
creased. At low shear rates, however, polymer chains aligned
and potential scission occurred, disrupting the network and
reducing viscosity.
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3.4 Proppant transport performance

Effective proppant transport is critical to stimulation suc-
cess. Low-viscosity slickwater relies on high flow rates and
large volumes to suspend proppants, making conventional
static evaluation methods inadequate. This study conducted
dynamic proppant transport experiments using a visual fracture
model.

Figs. 8(a) and 8(b) show the proppant bank morphology
and height profile of Slickwater-NPAS at proppant concentra-
tions of 5 vol% and 15 vol%, respectively. The integration
of height curve for the 15 vol% case (Fig. 8(f)) yielded a
proppant bank volume of 18.7 cm?, occupying 58.3% of the
fracture model volume—representing a 36.2-percentage-point
increase in model occupancy compared to the 5 vol% case.
These results indicate that while Slickwater-NPAS is effec-
tive at lower proppant concentrations, it has limited capacity
to transport high proppant concentrations without significant
premature settling. Figs. 8(c) and 8(g) illustrate the settling
behavior of coarser 40-70 mesh proppant in Slickwater-NPAS.

The proppant bank volume occupied 26.1% of the model, a
4.0-percentage-point increase compared to finer 70-140 mesh
sand, demonstrating reasonably effective transport for both
proppant size ranges under the tested conditions. Figs. 8(d) and
8(h) show the performance of Slickwater-NPAS at a reduced
flow rate (50 L/min). The proppant bank volume occupied
38.8% of the model, a 16.7-percentage-point increase relative
to the 100 L/min case, clearly demonstrating that increasing
the flow rate enhances the proppant transport capability of
slickwater.

Figs. 8(a) and 8(e) compare the proppant distribution per-
formance of Slickwater-PAS and Slickwater-NPAS (via prop-
pant bank morphology), quantified using height distribution
profiles. Integrating these profiles (Fig. 8(i)) revealed similar
total proppant bank volumes for both systems (22% model oc-
cupancy). However, a critical difference was observed in spa-
tial distribution: within the near-wellbore fracture section (0-
2,400 mm), the settled proppant volume accounted for 67.5%
of the total bank volume for Slickwater-PAS, compared to only
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46.3% for Slickwater-NPAS. This indicates that Slickwater-
PAS tends to cause proppant settling in the proximal (near-
wellbore) region, whereas Slickwater-NPAS transports prop-
pants more toward the fracture distal end—confirming its su-
perior proppant transport capacity. This enhancement is driven
by two synergistic mechanisms (Fig. 8(j)): (1) Nanoparticles
preferentially adsorb onto micro-asperities on the fracture
wall, reducing effective surface roughness and inducing wall
slipperiness (Brostow, 2008; Asidin et al., 2019); and (2) PAS
forms a viscoelastic boundary layer that dampens turbulent
kinetic energy dissipation. Within this layer, nanoparticles
act as physical crosslinkers, reinforcing the layer through
multiple hydrogen bonds with polymer chains. This thickens
the effective shear-thinning film and enhances energy retention
for proppant suspension (Brostow, 2008; Asidin et al., 2019).

3.5 Temperature resistance properties

Maintaining high DR at elevated temperatures is crucial
for forming complex fracture networks and ensuring adequate
fluid coverage. Fig. 9(a) presents the DR of slickwater fractur-
ing fluids formulated with Slickwater-PAS, Slickwater-NPAS,
and two water-in-water emulsion drag reducers (i.e., JHFR-1
and JHFR-2) under varying temperature conditions, with the
drag reducer concentration fixed at 0.10 vol%. As temperature
increased, a consistent decrease in DR was observed across
all tested systems. For illustration, the DR values of JHFR-1,
JHFR-2, Slickwater-PAS, and Slickwater-NPAS declined from
72.3%, 75.2%, 74.4%, and 76.1% at 30 °C to 70.3%, 67.3%,
72.5%, and 74.3% at 90 °C, and further decreased to 65.7%,
62.1%, 63.3%, and 69.7% at 150 °C, respectively. This decline
arises from the dependence of polymer drag reduction efficacy
on molecular chain extension and molecular weight (Zhang et
al., 2019): Elevated temperatures induce chain scission and
weaken hydrogen bonding between polymer chains and water
molecules (Kamel and Shah, 2009), thereby causing chain con-

traction and reducing drag reduction capability. Importantly,
the incorporation of nanoparticles significantly enhanced the
thermal stability of the slickwater system, as evidenced by
the consistently higher DR of Slickwater-NPAS throughout the
entire temperature range.

Thermal stability evaluations at a drag reducer concentra-
tion of 1.0 vol% revealed significant differences between the
two systems (Figs. 9(b) and 9(c)). The viscosity of Slickwater-
PAS decreased from 14.6 mPa-s at 30 °C to 9.5 mPa-s at
150 °C, corresponding to a viscosity retention rate of 65.1%.
In contrast, Slickwater-NPAS maintained a viscosity of 12.4
mPa-s at 150 °C, with a retention rate of 77.8%. Microscopic
observations of slickwater samples aged at 150 °C revealed
distinct aggregation morphologies. Slickwater-PAS (Figs. 9(d),
9(e), 9(f) and 9(g)) exhibited disrupted polymer networks with
few intact structures remaining; the morphology was charac-
terized by loose, porous architectures and irregular aggregates,
resulting from chain agglomeration upon thermal degradation.
Conversely, Slickwater-NPAS (Figs. 9(h), 9(1), 9(j) and 9(k))
predominantly displayed intact and compact network frame-
works, with markedly fewer fractured domains. This morpho-
logical evidence confirms that aminated nano-silica reinforces
the polymeric network structure of PAS, thereby enhancing
thermal stability and preserving both absolute viscosity and
the viscosity retention ratio (Lewandowska, 2007; Yang et
al.,, 2013; ? , ? ). This structural integrity underlies the
sustained drag reduction and proppant transport capabilities
of Slickwater-NPAS under high-temperature conditions.

3.6 Insights into the high-temperature resistance
mechanism

To elucidate the origin of the observed macroscopic
enhancements in thermal properties — specifically drag re-
duction and proppant transport capacity — molecular dy-
namics simulations were employed to probe nanoparticle-
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polymer interactions and network stabilization mechanisms
at the molecular level. Spherical nano-silica aggregates (ra-
dius 10 A) were modeled by truncating bulk a-quartz. Sur-
face oxygen atoms were grafted onto silicon free radicals
to simulate oxidation. Subsequently, 20 out of 100 surface
oxygen radicals were randomly selected for covalent bond-
ing with 7y-aminopropyltriethoxysilane (to simulate amino-
functionalization), while the remaining oxygen radicals were
saturated with hydrogen atoms (Fig. 10(a)). The PAS ma-
trix was modeled using AM6AMPS4 chains (Fig. 10(b)).
The NPAS composite structure was constructed by embed-
ding a single nanoparticle at the center, surrounded by 40
AM6AMPS4 chains (Fig. 10(c)). The control PAS model
contained only 40 AM6AMPS4 chains (Fig. 10(d)). To ensure
charge neutrality, Na* counterions were added to both systems.

The calculated glass transition temperature (7;) for PAS
was 536.37 K, compared to 593.86 K for NPAS (Fig. 10(e)),

representing a substantial increase of 57.5 °C. NPAS also ex-
hibited higher density than PAS across the temperature range,
indicating that nano-silica incorporation densifies the PAS
network, thereby enhancing thermal stability. To assess the
effect of nano-silica on molecular mobility, the MSD of PAS
and NPAS chains was calculated (Fig. 10(f)). NPAS exhibited
significantly reduced atomic mobility, with MSD values 23.5%
lower than those of PAS at 600 K. The steeper slope of
the PAS MSD curve further confirms restricted segmental
motion in NPAS, demonstrating that nanoparticles effectively
suppress thermal fluctuations within the polymer matrix. Using
equilibrated models at 300 K, hydrogen bond analysis was
performed over a 100 ps trajectory. NPAS formed 18.7%
more intermolecular hydrogen bonds than PAS (Fig. 10(g)).
Complementary electrostatic charges between the protonated
amino groups on nano-silica and the dissociated sulfonic acid
groups on PAS drive strong electrostatic interactions. The
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average electrostatic energy calculated over the same 100 ps
period was -2.1 x 10* kcal/mol (Fig. 10(h)).

The above findings collectively explain the observed net-
work densification and enhanced thermal resistance, which are
attributed to two primary mechanisms (Fig. 10(i)) (Zaragoza et
al., 2015; Zareie et al., 2019; Xu et al., 2022): (1) The amide
groups of PAS form multiple hydrogen bonds with the amino
and hydroxyl groups of nanoparticles; and (2) the dissociated
sulfonic acid groups (—-SO37) on PAS are electrostatically
attracted to the protonated amino groups (—NHs*) on the
nanoparticle surface. These interactions collectively restrict
polymer chain mobility and stabilize the structure against
thermal degradation.

4. Conclusions

In this work, a nano-enhanced slickwater fracturing fluid
(Slickwater-NPAS) with excellent drag reduction and proppant
transport performance was developed for high-temperature
reservoirs (e.g., deep shale reservoirs). The incorporation of
aminated nano-silica into the AM-AMPS copolymer (PAS)
rendered the polymer network reinforced through synergistic
hydrogen bonding and electrostatic interactions, effectively
mitigating thermal degradation. The key improvements in-
clude: (1) A viscosity retention rate of 77.8% after thermal

aging, compared to 65.1% for non-reinforced system; (2) a DR
of 69.7% at 150 °C, representing a 10-percentage-point im-
provement over the non-reinforced system; and (3) enhanced
proppant transport capacity, which reduces the proppant set-
tling area by 21.2% and promotes proppant placement in the
distal fracture. The elucidated dual reinforcement mechanism,
combining nanoparticle-mediated wall smoothing and turbu-
lence suppression with molecular-level network stabilization,
effectively restricts polymer segmental mobility, increasing the
T, by 57.5 °C and enhancing thermal stability. Specifically,
NPAS exhibits 18.7% more hydrogen bonds and 23.5% lower
segmental mobility than PAS, which stabilizes the polymer
against thermal degradation. This work provides a robust
framework for designing heat-resistant fracturing fluids for
deep reservoirs. Future studies should focus on quantifying the
structure-activity relationship between fracturing fluid addi-
tives and their application performance, thereby offering more
effective guidance for the iterative advancement of fracturing
fluid technologies.
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