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Abstract:

The heterogeneous spatial distribution of fluids induced by capillarity leads to the difficulty
to accurate describe seismic wave dispersion and attenuation in partially saturated rocks,
affecting the precision of hydrocarbon reservoir exploration. In this work, based on the
Santos framework, a modified Santos-Rayleigh model was developed for partially saturated
double-porosity medium by reformulating the Biot-Rayleigh equations to incorporate
capillarity and kinetic energy effects within fluid inclusions. Numerical analysis reveals
that the presence of capillarity induces an additional enhancement of P-wave velocity
within low-frequency. Furthermore, under varying configurations of water, oil and gas, the
P-wave velocities in the low-frequency band fall below the Gassmann-Wood limit due to
coupled capillarity and mesoscopic flow. Significant dispersion and attenuation occur when
gas serves as the inclusion, and a smaller modulus contrast between the host and inclusions
leads to weaker low-frequency dispersion. The internal kinetic energy of inclusion gives
rise to a shift of both dispersion and attenuation toward lower frequencies. Comparison
with the experimental data confirms that the modified model exhibits a good low-frequency
agreement, providing reliable velocity predictions under varying water saturation levels.

1. Introduction

demonstrated that fluid distribution exerts a dominant control

With the porous media of hydrocarbon or carbon seques-
tration reservoirs often containing multiphase fluid mixtures,
seismic methods are considered as the most common approach
for evaluating reservoir properties. Wave-induced fluid flow
at different scales has been recognized as the primary cause
of velocity dispersion and attenuation. Numerous experiments
have been conducted to investigate this phenomenon, ranging
from direct fluid mobility measurements to integrated com-
puted tomography imaging and seismic-frequency studies in
partially saturated rocks (Batzle et al., 2006; Li et al., 2020;
Chapman et al., 2021; Sun et al., 2022), and they consistently

on velocity dispersion and attenuation patterns. Therefore,
a comprehensive understanding of how pore fluid impacts
elastic wave dispersion and attenuation is critical for the
characterization of reservoir properties and assessing their
viability.

For partially saturated media, the effective elastic moduli
are strongly frequency-dependent due to the wave-induced
fluid flow at different scales. At low frequencies, as pore
fluids remain fully relaxed, the pore pressure becomes fully
equalized between regions saturated with different fluids,
which corresponds to the lowest effective elastic modulus (as
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Fig. 1. Schematic of a partially saturated double-porosity
medium with a solid skeleton and two immiscible fluid phases,
showing the global flow (red arrows) and mesoscopic flow
(black arrows).

described by the Gassmann-Wood bound). In contrast, at high
frequencies, fluid pressure fails to reach equilibrium, leading
to the highest effective elastic modulus (as described by the
Gassmann-Hill bound) (Mavko et al., 2009). To characterize
the frequency-dependent behavior, researchers have developed
theoretical models that take into account fluid flow at multiple
scales. At the macroscopic scale, Biot (1956, 1962) theory
and its extensions (Santos et al., 1990a, 1990b) quantified the
dispersion and attenuation of global flow, laying the foundation
for the subsequent development of rock physics models. Build-
ing upon this, macroscopic models have been extended for
application to three-phase porous media and non-Newtonian
fluid (Liu et al., 2022; Ba et al., 2023). To quantify wave
dispersion and attenuation caused by squirt flow, theoretical
models have been proposed at the microscopic scale (Mavko
and Nur, 1975; O’Connell and Budiansky, 1977; Murphy
I, 1982; Solazzi et al., 2021), later validated numerically
(Quintal et al.,, 2019; Alkhimenkov et al., 2020; Lissa et
al., 2020) and experimentally (Sun et al., 2020). However,
as these theories were established for sonic to ultrasonic
frequencies, they remain inapplicable to seismic exploration
bandwidths. In this context, the patchy saturation model was
proposed (White, 1975; Dutta and Odé, 1979) to character-
ize mesoscopic flow-the main mechanism governing seismic
wave anelasticity that operates at a scale between individual
pores and seismic wavelengths-and has been further developed
through the introduction of scaling factors, the branch function
approach, and random distribution models (Johnson, 2001;
Miiller and Gurevich, 2005; Zhao et al., 2021b; Wang et
al., 2022).

A significant limitation of the aforementioned foundational
models is their focus on a single fluid-flow mechanism,
whereas realistic rock physics requires the integration of
multiple, coupled scales. Consequently, combined models in-
corporating two mechanisms have been developed extensively,
such as those integrating global with squirt flow (Dvorkin and
Nur, 1993; Pride et al., 2004), global with mesoscopic flow
(Ba et al., 2011; Zheng et al., 2017; Guo et al., 2022; Zhang

et al., 2022), and mesoscopic with squirt flow within a patchy
framework (Zhao et al., 2021a; Liao et al., 2025; Jiang et
al., 2025). By integrating these methods, the characterization
of seismic wave attributes in partially saturated rocks has
become more accurate, particularly in frequency bands where
two mechanisms operate simultaneously. More recently, efforts
have advanced towards unified models that simultaneously
account for three distinct flow mechanisms to analyze their
coupled effects (Sun, 2021; Xu et al., 2022; Shi et al., 2024).
These advanced models offer a more comprehensive physical
basis for interpreting seismic responses in realistic reservoir
conditions. However, current theory often treats capillarity
effects as a single scale, neglecting their variation across
different observational scales (Santos et al., 1990a, 1990b;
Qi et al., 2014; Solazzi et al., 2021), and the internal kinetic
energy of mesoscopic-scale inclusions has not been taken into
account.

Although existing models can help explain the wave prop-
agation features in partially saturated porous media, they fail
to simultaneously incorporate the capillarity between fluid
phases and the kinetic energy of fluid within inclusions. To
address this limitation, this study developed a modified Santos-
Rayleigh model that incorporates the capillarity and the fluid
kinetic energy within inclusions. The kinetic and dissipation
energy functions were first reformulated through the analysis
of the mesoscopic flow velocity field inside the inclusions,
and then the reformulated mesoscopic flow mechanism was
integrated into the Santos framework. Numerical simulations
were conducted to analyze the P-wave velocity and attenuation
under various fluid configurations with water, oil and gas. Fi-
nally, the predicted results were evaluated against the available
experimental data.

2. Theoretical model

2.1 Model of partially saturated double-porosity
medium

Considering a partially saturated porous medium, it com-
prises a solid skeleton and two immiscible fluids, with porosity
denoted as ¢. The pore space is occupied by two immiscible
fluids, a wetting-phase fluid (subscript w) and a non-wetting-
phase fluid (subscript n). The saturations of the non-wetting
and wetting phases are represented by S, and S,,, respectively,
with S, +S,, = 1, and their corresponding residual saturations
are denoted by S,, and S, by satisfying S,, < S, < S,. In
this work, the pores containing the wetting-phase fluid are
regarded as the host phase, whereas those containing the non-
wetting-phase fluid are treated as inclusions, as shown in Fig.
1.

The theoretical framework proposed in this work is based
on the following idealized physical assumptions (Ba et
al., 2011, 2012): (1) The inclusions are spherical and share the
same size; (2) the boundary conditions between the inclusions
and the host are considered to be open; (3) the radius is
much smaller than the wavelength; (4) the inclusion volume
ratio is low, so that the interactions between inclusions can be
neglected.
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2.2 Kinetic energy function

In formulating the kinetic energy and dissipation functions
of partially saturated models, the kinetic energy contribution
from fluid within spherical inclusions has been widely ne-
glected (Ba et al., 2012). To address this limitation, the internal
fluid velocity field for a spherical inclusion is first derived.

As illustrated in Fig. 1, the rock skeleton is partitioned
into “intra-sphere” and “extra-sphere” regions by the inclusion
boundary. The volume fraction of inclusions fluid in the “intra-
sphere” region can be represented by v,, with the porosity
@y = v 0n0. The volume fraction of host phase in the "extra-
sphere" region is represented by v, and the porosity is ¢,, =
vwowo. Here, ¢,,0 and ¢,0 represent partial porosities within the
respective regions. For the porous medium with a structure
such as that shown in Fig. 1, the relation ¢,0 = @0 = ¢ is
satisfied.

First, by considering a compressible fluid within the in-
clusion, the continuity equation (fluid mass conservation) in
spherical coordinates can be given as:

Brtpn| g ()] =0 1)
where p,, represents the density of the non-wetting phase fluid,
time is denoted by ¢, the radius of the fluid sphere after
deformation is defined as r, and the particle velocity of the
fluid within inclusions is given by 7. Due to the negligible
variation in dp,/dr, it can be taken as constant. Integrating
both sides of the equation with respect to r yields:

.1 (dp,
Fin = 3Pn< e >r )

The radius of inclusion is Ry, where R is the dynamic
radius of the fluid sphere, and the corresponding particle
velocity at the boundary is R. Under the assumption of constant
fluid mass inside the inclusion, the relation p,R> = C+o(e)
holds, where C is a constant, and the following relation can
be obtained:

dpy 3C .

=——"R 3
dr R* )

The fluid velocity within the inclusion (r < R) can be

obtained by combining Egs. (2) and (3) as:

Rr
fin =& “)
Then, the kinetic energy inside inclusion fluid 7;, is given

by:

1 R . 2 .
o= 3000 [ 477 (1)’ dr = Z200p R (5)
By applying the fluid mass conservation, the fluid velocity
outside the inclusion 7,, (r > R) can be derived as:

RR*,0
Yout 2 ¢w0 ( )

The kinetic energy outside inclusion fluid 7, is given by:

270,02, .
Ty = MR2R3 (7)
¢w0

The kinetic energy consists of two approximately decou-
pled components: That associated with wave propagation and
that due to radial motion of the spherical inclusion. Thus, the
total kinetic energy 7 can be derived as:

T— % P+ % Py UM . U0 4 % Py UM ) "
+pou- U(W) +pp3u- U(") +p23U(W) U(") + Tlff

where P11, P22, P33, P12, P13, and por3 are the density co-
efficients; P11 = P —2(PuSn+ PwSw) @ + (80 + &w +28m) 97,
p2=2¢ (prw —gwd _gnw(P)’ P13 =0 (ann — 80 — gnwd))’
P22 = gwd>, P23 = guw>, P33 = gu@%, and p = (1 —¢)p, +
Snopn + Swdpy, where py denotes the grain density, g, =
SlzpnF;/(P? 8w = SwprS/(P and 8nw = 01\/&Tgw are the cou-
pling density coefficients, Fy = (1+1/¢)/2 is the formation
structure factor; u, U™ and U™ denote the displacement
vectors of the solid phase, wetting-phase fluid, and non-
wetting-phase fluid, respectively; Tjss represents the kinetic
energy function of mesoscopic fluid flow.

The kinetic energy function for a single inclusion T,
includes contributions from both the interior and exterior fluid,
which gives:

2 21> .
Ts‘in =1+ T()ut = <ﬂ¢n0pn + ¢n0 pw) R2R3 (9)
5 ¢w0
For a system containing Ny inclusions, the total volume of
inclusions is v, = 4R3Ny /3, thereby yielding:

R3 — 3¢n

47 $noNo

The influence of mesoscopic flow oscillations is character-

ized by introducing the fluid variation {. At each oscillatory

process, the conservation of fluid mass is satisfied, with

O (0,8) + ¢ (—0,&) = 0. The effective volume variation is

0,8 ~1—Vy/V, where V) and V denote the volumes of the

spherical inclusion before and after deformation, respectively.
Then, the fluid variation increment is obtained:

1 R3
=5 (%) “”

Taking the limit as R approaches Ry, the following relation
can be obtained:

(10)

| :
R~ §¢WR0C (12)
Therefore, the kinetic energy of mesoscopic flow oscilla-
tions for the system is:

typ =% (24905, ) 22

2.3 Dissipation energy function

13)

The total dissipation D originates from two distinct mech-
anisms: Macroscopic frictional dissipation resulting from rel-
ative motion between phases, and mesoscopic dissipation
induced by fluid oscillatory, expressed as:
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D=1tm (u—U<W)) : (u—U(W>) +m, (u—U<")) : (u—U<”>)

2 2
—mi2 <fl - U<W)) . (fl - U(n)) +D[ff
(14)

where m;, my and myy represent friction coefficients,
mp = bw¢2, nmy = bn¢2, mpy = bnwd)z, b, = S,%nn/’(krm
by = S2Mw/Kkrws buw = SuSwkemw/TinTiw/D, Where k rep-
resents the permeability of rock, D = & (kmkpw —kZ,,).
kpnw = Vv 0.1kpnkpw, ki = (Sn _Srn)z(l - Srn)izs krw = (Sw -
Spw)?(1—S,,)72, where k., and k,,, are relative permeabilities
of the host and inclusion phases, respectively; D;r represents
the dissipation function due to mesoscopic flow oscillations.
Similarly, the total dissipation function Djss for the whole
system induced by mesoscopic flow can be derived as:

2 oo 2 R
Dysr = L;?(ZW /R 4707 (Fou ) dr + L;(g" /0 4nmr?id dr

. (15)
- 279,50 + 2”453077”) OndiaRGE?

Ky 5%, 127 y0
where 7, and m, are the viscosities of the wetting-phase
and non-wetting-phase fluids, respectively; x,, and &, are
the permeabilities of skeletons outside and inside inclusion,
respectively.

2.4 Potential energy function

Due to the presence of macroscopic capillarity and incor-
porating mesoscopic flow effects, the potential energy function
for the partially saturated porous media W is expressed as:

W = Z(A+2N)I} —2NL + Q111 (8 + 9.$)

i S

+ 2R (EY +0,0)° + 0oy (E"— 940) (16)

2
3R (€'~ 0uL) R (€4 0u8) (6"~ 9u0)
where I} and I, are independent variables representing
the strain components of the solid skeleton in double-
porosity medium (Ba et al, 2011); &Y and &" de-
note the volumetric strains of the host and inclusion
phase fluid, respectively; A, N, Qi, 02, Ry, R, and
R3 are elastic coefficients, A = A, — 2B1¢ — 2Br¢ +
(M) + M, +2M3) 9> N = G, Q1 = ¢ (B — M19 — M39), 0> =
¢ (By—Mrp —M39) , Ry = M19* , Ry = Mr¢? , R3 = M3¢)?
5 2fc =K. _2Gb/3 , B = Kcﬁ[(sn+ﬁ)y_ﬁ+(y_ 1)77]

, By = Kcﬁ[SW-i-(l—’)/)T]] , My = —M; —31/5Kb
. My = (rBy + m)/q.M3 = —B12(1/K,8 + r/q) — 1/q.
where G;, denotes the shear modulus of frame, K. =

[K:Kp$/(Ky —Ky) + KK r(Kp — K5)] /| [Ks¢ (Ky — Ky) + K
(Ky—K)|,  Kp = o (¥Su/Ku+Su/Kw) "y = (1 +
PeaSnSw/Kw) /(1 + PegSuSw/Kn)s o = 14+ (y — 1)(Sn +
B).r = [aB2— (Su+B)KsS) /(Ke — Kp), 8 = 1/K, — 1/Ky,
g = 0(1/K, + 1/p.,SuSw), where K; and K, repre-
sent the bulk modulus of grain and frame, ¥ =
[1/Ky—1/Ky+0(1/Ky— 1/Ko)] /o' [1 /K, — 1Ky + (1K,
_I/Kf)]» Pca(Sn) = A/(Sn +Smw — 1)2 _AS%n/S%(l —Sm —
Snw)? (Ravazzoli et al., 2003), B = pea/phas N = Pw/ Phy» Where
pL, is the first-order derivative of p., with respect to S,,.

2.5 Wave propagation equation

Based on Hamilton’s principle and using displacement
as the generalized coordinate, the Lagrange equation for the
—5—+=-=0
du

system is:
dL dL
3(5) % [3,0) - 5 5

where u represents one of the components of vectors u, U™)
and U™, taken here as generalized coordinates, and L=T —W
represents the Lagrange density.

The wave propagation equations with the effect of capillary
and kinetic energy within inclusions governing a partially
saturated dual-porosity medium are obtained by incorporating
the relevant potential, kinetic and dissipation energy functions
into the Lagrange framework:

L oD 07

priii+p12U™ + 30 4 (my —myp) (a — UM
+ (my —myp) (0 —U™)

=NAu+ (A+N)Ve+ 01V (E"+¢,0) + 02V (E" — 0,0)
(18)

pr2ii + p2 U™ + ps UM — iy (0 — UMW) 4 mya (0 — UM)

=01Ve+ RV (6" +908) + RV (6" — 9uC)
(19)

P13+ P30 + p33 UM 4 myp (0 — UW) —my (0 —TM)
=QVe+R3V (" +¢,8) + RV (8" — 9, 0)

(20)
(Pnpn »%R(Z)C + ¢v%¢n¢n0pr(2)§ + an(z) ¢n0¢n¢v%g
15 3¢w0 3 K
2p2 2
+ ¢n0 (bn ¢wR() T]nC (21)
15k,

= 0 [Qre+Ri (& +nC)] — g [Q2e + Ra (S" — 9 C)]
+R3 (*éw(l’w + §n¢n - 2¢W¢nC)

Applying the divergence operator to the wave equations
yields the governing equations for P waves. The following
equations can be obtained by incorporating the plane wave
solutions into the P-wave equations:

ank?+byy  anpk®+bi  aik®+bis
aynk*+by  ank®+byn apk®>+by |[=0 (22)
a31k> +b31  ank®+by  azzk® +bs

where ap = A+ 2N + (Q2¢n—Q1¢W)2/S,§lzz = R +
(R3¢, —R19y)" /S,a33 = Ry + (Ro§p—R3¢,)" /S, ain =

ar = Q1 + (020,—010w) (R3¢ —R10w)/S,a13 =
azi = O + (020, —Q10y) (R2Pn—R39y) /S, a3z =
a2 = R3 + (R3¢0,—Ri¢y) (R0 —R30,) /S, 011 =

—(O[pl](l)—i(ml—|—le—Zmlz)],bzzz—(!)(pzzw—iml),b33:
—0(p33@ —imy) b1y = by = —@[ppo+i(m —mpy),
bz = by = —0po+i(m—mp)|,by =
— (P23 +imyy), where

by =
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Fig. 2. P-wave (a) velocity and (b) attenuation for the Santos model (with capillarity) and the modified Santos-Rayleigh model

(with or without capillarity-gas in water).

Table 1. Physical parameters of rock and pore fluids.

Parameter Value Unit
Ps 2,650 kg/m3
K, 35 GPa
Ky 7 GPa
Gy 9 GPa
K 0.1 x10712 m?

) 0.15 /
Water (K) 2.223 GPa
Water (p) 990 kg/m3
Water (1) 0.001 Pa-s
Gas (K) 0.022 GPa
Gas (p) 100 kg/m3
Gas (1) 15x107° Pa-s
Oil (K) 0.6 GPa
oil (p) 900 kg/m3
Oil (n) 0.006 Pa-s

3 Ky

g_ ©9000w0RG (M pao>
15 Kn ¢W0

) Ra9? — RI02+ 2R30us

I w¢v% On ¢w0R(2) (mw

0

¢W0
(23)
By solving Eq. (19), the wavenumbers of P waves k, can
be determined. The P wave velocity and attenuation in the
model presented in this study are derived as:

y= [Re (’;‘)’Hl (24)
0 '= m 25)

3. Numerical examples

In actual subsurface formations, the pore space may typi-
cally contain fluid mixture with water, oil and gas at varying
saturation levels. To assess the rationality of the proposed
model, numerical examples were conducted by considering
a single solid skeleton and two immiscible fluid phases. First,
the effect of capillarity was analyzed. Then, different config-
urations of fluid inclusions involving water, oil and gas were
analyzed and compared with the Santos model. The physical
parameters of the rock and pore fluids were listed in Table 1
(Carcione et al., 2004; Ba et al., 2012). In the calculations, the
residual saturations of the host and inclusion fluids were set
to Spp = 0.05 and S,, = 0, respectively. Here, A = 3,000 Pa,
reference pressure p,, = 30MPa, and inclusion radius Ry = 0.1
m. Our analysis focused on the P-wave propagation due to its
significance in seismic modeling.

3.1 Influence of capillarity

The proposed model incorporates capillarity effects
through the capillarity coefficient, and the capillarity relation-
ship is given in Section 2.4. To evaluate its impact on the dis-
persion and attenuation behavior of seismic wave propagation
in partially saturated rocks, two situations were considered,
one with capillarity and another without capillarity. As is
shown in Fig. 2, with water as the host phase and gas as
inclusions (water saturation S,, = 0.95), the Santos model
exhibits only one dispersion zone and attenuation peak, while
the modified Santos-Rayleigh model exhibits two dispersion
zones and attenuation peaks. This difference arises because the
Santos model accounts for the global flow alone, whereas the
proposed model incorporates both global and mesoscopic flow
mechanisms. It is observed that the velocities and attenuation
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Fig. 3. P-wave (a) velocity and (b) attenuation for the Santos model and the modified Santos-Rayleigh model (gas in water).
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Fig. 4. P-wave (a) velocity and (b) attenuation for the Santos model and the modified Santos-Rayleigh model (oil in water).

of the two models coincide in the high-frequency regime.
However, the proposed model (with capillarity) has a notable
impact, leading to a higher low-frequency P-wave velocity
compared to the proposed model (without capillarity), thereby
causing a reduction in dispersion. The observed velocity
increase is a direct consequence of the greater interfacial
stiffness between the immiscible fluids due to the capillarity
effect, which induces an overall stiffening effect in the rock
frame and the stiffness weakens the relative flow between the
fluids at the mesoscopic scale, leading to lower attenuation.
This is consistent with the capillary effects discussed by Qi et
al. (2014). Within the high frequency range, pressure diffusion
between the two fluid phases has insufficient time to occur.
Consequently, the rock frame exhibits higher stiffness and the
influence of capillarity becomes insignificant.

3.2 Water as the host phase

For the double-porosity models, in which water serves as
the host phase with gas or oil inclusions (water saturation S,, =
0.95), the P-wave velocity and attenuation are presented in

Figs. 3 and 4. In the low-frequency regime, the Santos model
coincides with the Gassmann-Wood lower bound, whereas
the proposed model predicts velocities below this limit. This
deviation occurs due to the coupling between mesoscopic
flow and capillarity. Compared to the gas-in-water case, the
P-wave velocity is higher in the oil-in-water configuration,
which is due to the higher elastic modulus of the overall
fluid system for the latter case. Moreover, the dispersion and
attenuation within the low-frequency regime is significantly
smaller in the latter case. This reduction is related to the
smaller modulus contrast between the two fluid phases. It is
also shown that accounting for the internal kinetic energy (i.e.,
KE) of inclusions has a negligible effect in the gas-in-water
case, because the significantly lower density of gas makes the
kinetic energy induced by its oscillatory motion negligible.
However, in the oil-in-water case, after accounting for the
internal kinetic energy of inclusions, both the velocity and
attenuation in the low-frequency range shift toward the left
end of the frequency axis. This occurs because the density
difference between oil and water is small, while oil has a
higher compressibility.
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Fig. 5. P-wave (a) velocity and (b) attenuation for the Santos model and the modified Santos-Rayleigh model (water in gas).
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Fig. 6. P-wave (a) velocity and (b) attenuation for the Santos model and the modified Santos-Rayleigh model (oil in gas).

3.3 Gas as the host phase

With gas serving as the host phase in water or oil inclusions
(gas saturation S, = 0.95), the P-wave velocity and attenuation
for double-porosity models are shown in Figs. 5 and 6. The
results indicate that in both cases, our model yields velocities
below the Gassmann-Wood limit within the low-frequency
regime and generates an attenuation peak. Within the high-
frequency domain, the predicted results converge with those
of the Santos model. Moreover, the dispersion and attenuation
difference between the two models at low frequencies de-
creases substantially. This reduction occurs because higher gas
saturation substantially increases pore fluid compressibility,
thereby reducing the coupling between mesoscopic flow and
capillarity. The leftward shift observed in the low-frequency
velocity dispersion and attenuation curves in both cases results
from the internal kinetic energy of the inclusions, which is a
response driven by the strong contrast between the host phase
(high compressibility and low density) and the inclusions (low
compressibility and high density).

3.4 Oil as the host phase

The double-porosity models, featuring oil treated as the
host phase (oil saturation S, = 0.95), demonstrate P-wave
velocity and attenuation behavior as shown in Figs. 7 and
8. The results indicate that in both configurations, our model
predicts velocities below the Gassmann-Wood limit, whereas
the predicted results coincide with those of the Santos model
in the high-frequency regime. Low-frequency dispersion and
attenuation behavior are more pronounced in the case of gas as
inclusions than for water as inclusions. This difference is also
attributed to the reduced modulus contrast between the fluid
phases. Furthermore, given that oil is the host phase and it has
higher density than gas and higher compressibility than water,
the internal kinetic energy of the inclusions has no significant
effect in either case.

4. Comparisons with laboratory measurements

The predictions of P-wave velocity and attenuation were
given against experimental measurements from the Berea
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sandstone reported by Chapman et al. (2021). The relevant
physical parameters of Berea Sandstone are provided in Table
2.

In this experiment, water served as the host phase with CO;
acting as the inclusions, and the results were obtained 7.3 h
after initiating depressurization. Fig. 9 compares the measured
P-wave velocity and attenuation data from Berea sandstone
at low frequencies (the CO, saturation is 0.1 percent) with
predictions from both the Santos model and the modified
Santos-Rayleigh model. The proposed model shows good
quantitative agreement with the experimental data in the 0.1-
300 Hz frequency range when the inclusion radius is 0.05
m and A = 3,000 Pa. Notably, it addresses the limitation
of the Santos model by well predicting the velocities below
the Gassmann-Wood limit at low frequencies. At frequencies
greater than 300 Hz, however, the experimental data gradually
increase and are higher than the model predictions. This devi-
ation may be attributed to two factors. First, the present model
assumes a homogeneous pore structure and uniform fluid
inclusion, neglecting the effects of pore-scale heterogeneity
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(Ba et al., 2012; Zhang et al., 2022) and variations in inclu-
sion arrangements. Secondly, the model incorporates global
and mesoscopic flow mechanisms but does not consider the
squirt flow, which becomes increasingly influential at higher
frequencies. The recent model of Shi et al. (2024) incorporated
squirt flow while improving the predictive performances in this
high-frequency regime.

The predicted velocities were compared with experimental
data by Murphy IIT (1982), which were obtained from a
Massillon sandstone sample in a partially saturated condition
with water as the host phase and air as the inclusions. The
relevant physical parameters of sandstone are given in Table
3. Fig. 10 presents a comparison between the measured P-
wave velocities data at varying water saturation levels within
the low-frequency range (600 Hz) and the results predicted by
the modified Santos-Rayleigh model. It can be seen from Fig.
10 that the velocity from the proposed model exhibits an initial
decrease with the water saturation levels increasing, attaining
a minimum at approximately S,, = 0.98, and then increasing.
This trend matches the experimental data as well as the trend
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Fig. 9. Comparison of P-wave (a) velocity and (b) attenuation between the measured data, the Santos model, and the modified

Santos-Rayleigh model (CO, in water).

Table 2. Parameters of Berea sandstone and pore fluids
(Chapman et al., 2021).

Parameter Value Unit
Ps 2,600 kg/m3
K, 30 GPa
K, 11.7 GPa
Gy 11.1 GPa
K 2.66 x 10712 m?

0 0.196 /

K, 2.23 GPa
Pw 997.67 kg/m?
N 9.1 x107* Pa-s
K, 0.0017 GPa
P 17.2 kg/m3
M 15%x107° Pa-s

observed in Ba et al. (2012) when the inclusion radius is 0.3
m and A = 50 KPa, further demonstrating the capability of the
model to predict P-wave velocities for seismic exploration.

5. Conclusions

This study presented a modified Santos-Rayleigh model
for partially saturated double-porosity medium, which in-
corporates capillarity and kinetic energy effects within fluid
inclusions. Numerical examples for the three different fluid
configurations exhibited a reduction in the velocities with
values falling below the Gassmann-Wood limit and exhibiting
attenuation peaks within the low-frequency regime, which is
due to the wave-induced fluid pressure diffusion between mes-

Table 3. Properties of Massillon sandstone and fluids
(Murphy III, 1982).

Parameter Value Unit
Ps 2,650 kg/m3
K; 35 GPa
Ky 1.02 GPa
Gy 1.44 GPa
K 2.66 x 10712 m?

¢ 0.23 /

K, 2.25 GPa
Pw 997 kg/m3
N 1x1073 Pa-s
K, 0.145 GPa
Pn 1.1 kg/m3
M 1.8 x107° Pa-s

oscopic heterogeneities, combined with capillary effects. Com-
parative analysis with experimental data from the Berea
sandstone revealed that the modified Santos-Rayleigh model
exhibits superior performance in describing low-frequency
behavior compared to the original Santos model. Validation
against the Massillon sandstone data further confirmed the
validity of the model in predicting the wave velocities under
varying water saturation levels. Meanwhile, the current model
does not incorporate the mechanisms such as squirt flow or the
further spatial variations in inclusion distributions, resulting in
the potential discrepancies at the higher frequencies. Further
investigations of multi-scale flow mechanisms are expected to
incorporate the effects of capillarity and internal kinetic energy



Yang, B., et al. Advances in Geo-Energy Research, 2026, 19(1): 72-82 81

1250 r .
This study
o Measured data
— 1200 &
Z
&)
&
1150 |
1100 . . . .
0.1 0.3 0.5 0.7 0.9

S,(%)

Fig. 10. Comparison of P-wave velocities at different water
saturation levels between the measured data and the modified
Santos-Rayleigh model (air in water).

of inclusions.
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