

Supplementary file

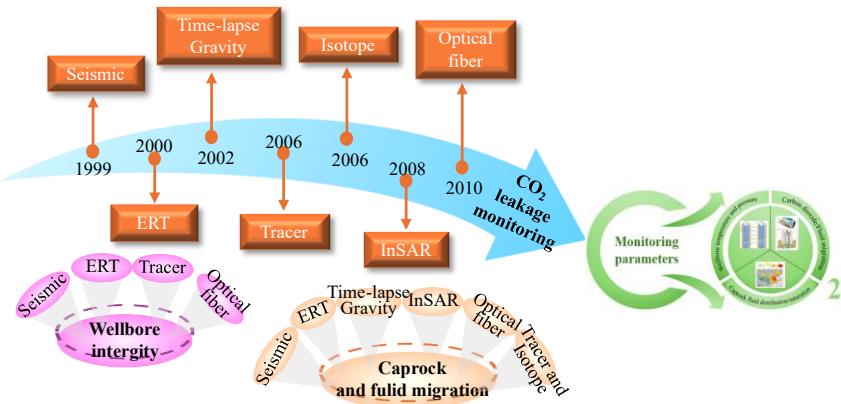
Advances in monitoring technologies for CO₂ geological storage: A review from the laboratory to field-scale applications

Yuhang Wang¹, Menglan Shi¹, Ning Wei², Aliakbar Hassanpouryouzband³, Lanlan Jiang^{1,*},
Yongchen Song^{1,*}

¹ *Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China*

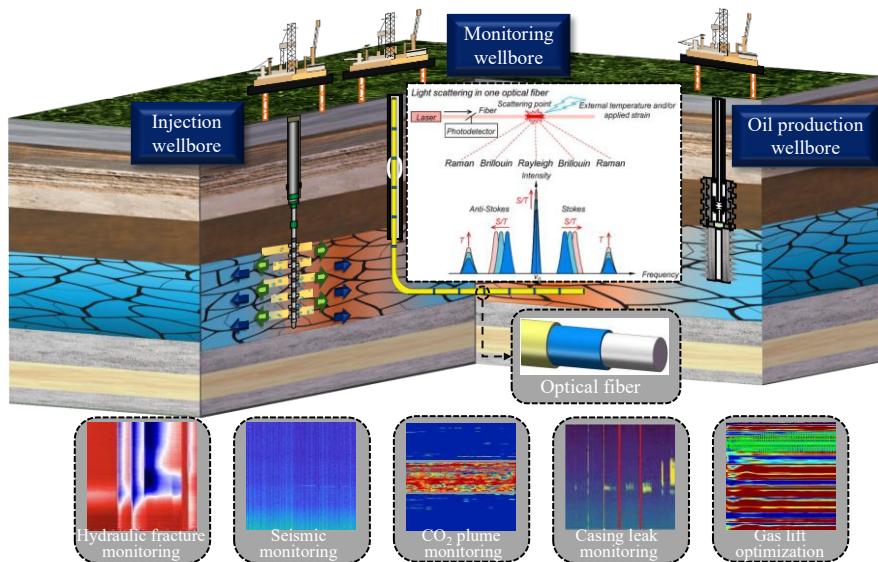
² *State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, P. R. China*

³ *School of Geosciences, University of Edinburgh, Grant Institute, Edinburgh EH9 3FE, United Kingdom*


E-mail address: wangyuhang@mail.dlut.edu.cn (Y. Wang); 12310020@mail.dlut.edu.cn (M. Shi); nwei@whrsm.ac.cn (N. Wei); Hssnpr@ed.ac.uk (A. Hassanpouryouzband); lanlan@dlut.edu.cn (L. Jiang); songyc@dlut.edu.cn (Y. Song).

*Corresponding author (ORCID: 0000-0001-5300-6332 (L. Jiang); 0000-0002-9864-8483(Y. Song))

Wang, Y., Shi, M., Wei, N., Hassanpouryouzband, A., Jiang, L., Song, Y. *Advances in monitoring technologies for CO₂ geological storage: A review from the laboratory to field-scale applications. Advances in Geo-Energy Research*, 2026, 19(2): 146-165.


The link to this file is: <https://doi.org/10.46690/ager.2026.02.04>

Since the beginning of the 21st century, countries (such as the United States, Canada, Australia, Japan, and the United Arab Emirates) have accelerated the industrial deployment of CO₂ capture projects, making significant contributions to CCUS development. Notable examples include Canada's Boundary Dam and Quest projects, as well as China's Enping offshore CO₂ storage demonstration project. In both pilot-scale studies and large-scale demonstration projects, monitoring CO₂ leakage is of critical importance, particularly in relation to wellbore integrity, subsurface CO₂ migration, and potential leakage through the caprock (Fig. S1).

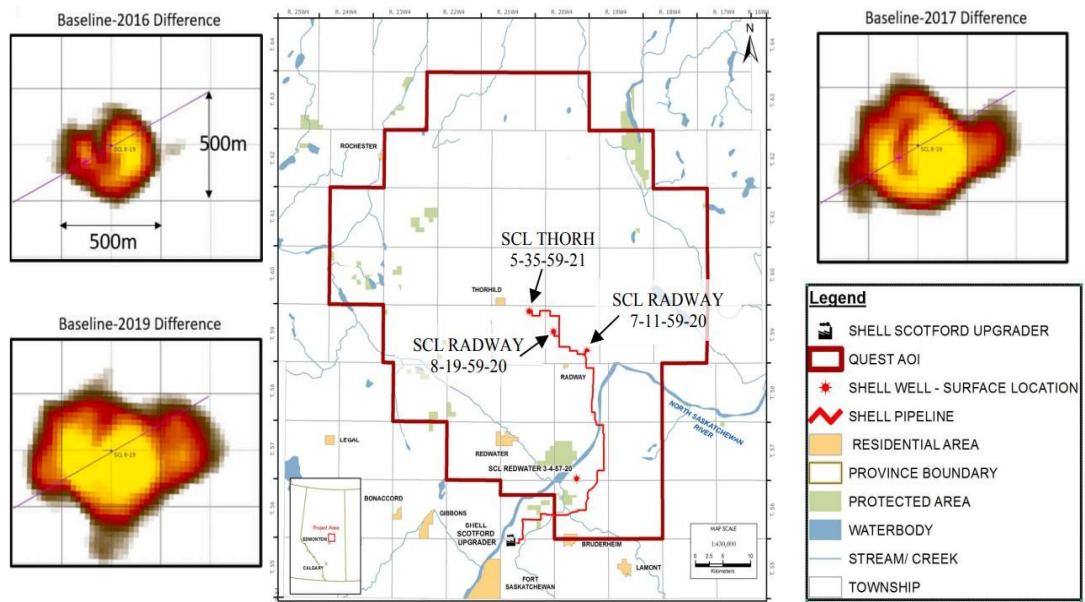


Fig. S1. Progress in monitoring methods for CO₂ leakage.

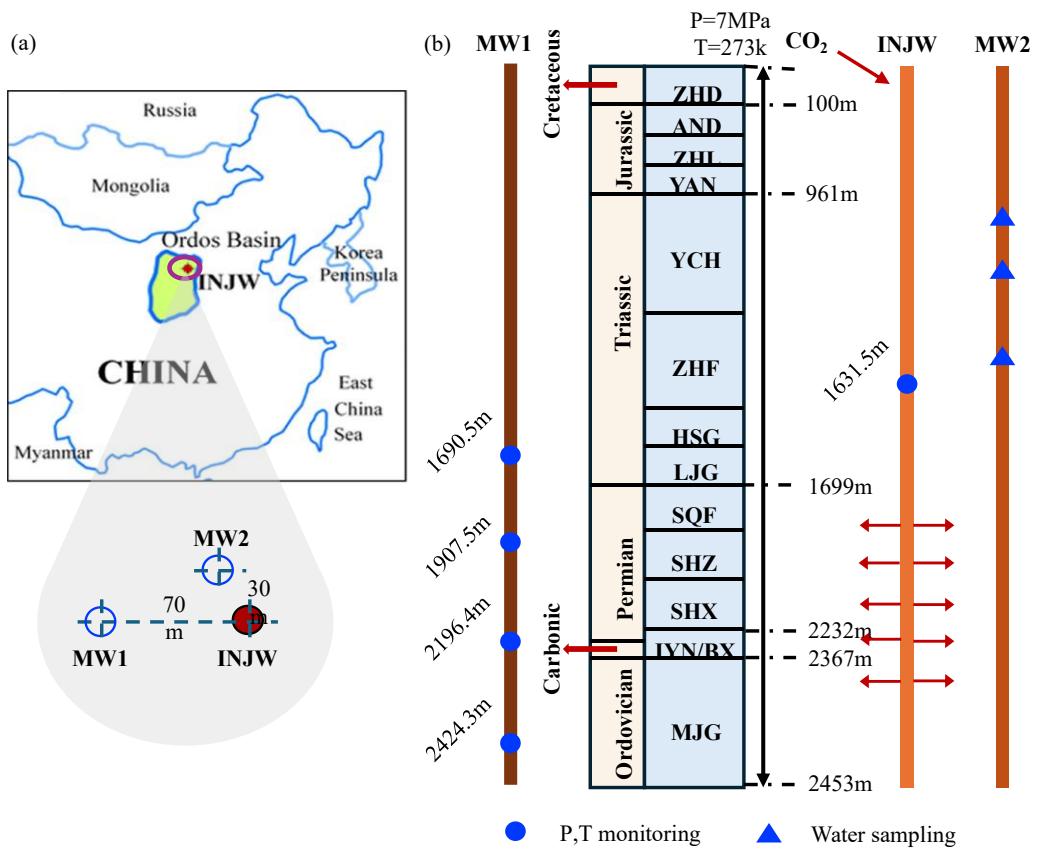

At present, distributed optical fiber sensing technology is widely applied and includes underground hydraulic fracturing monitoring (Saw et al., 2025), seismic monitoring (Cang et al., 2025), CO₂ plume monitoring (Chen et al., 2025), casing leakage monitoring (Gemeinhardt and Sharma, 2024), and gas lift optimization (Wang et al., 2025). Among available methods, optical frequency domain reflectometry (OFDR) offers superior accuracy, resolution, and sensitivity compared to optical time domain reflectometry (OTDR), and requires lower light source power for equivalent dynamic ranges (Ding et al., 2023; Lv et al., 2025).

Fig. S2. Application of distributed optical fiber sensing technology and schematic diagram of three kinds of scattered lights (Li and Liu, 2019; Zhang et al., 2019; Liu et al., 2024).

Fig. S3. Delayed seismic monitoring results of the Quest project (Rock et al., 2014; Stephen et al., 2022).

Fig. S4. Shenhua CCS demonstration project site information and underground monitoring system: (a) Location of the Shenhua CCS Project and (b) Schematic diagram of underground monitoring for the Shenhua CCS Project (Zhang et al., 2016).

Table S1. Research on the diffusion coefficient of CO₂ in water/brine.

Reference	Research methods	Temperature (°C)	Pressure (MPa)	Solution	Diffusion coefficient (×10 ⁻⁹ m ² /s)
Lu et al. (2013)	Raman spectroscopy	-5-200	10-45	Water	0.8-16.1
Kouhi et al. (2025)	MLP prediction model	210-673	0.1-100	Brine	0.0007-285
Omrani et al. (2022)	MD molecular dynamics simulation	21-150	10-30	Water/Brine	0.9109-11.2775
Li et al. (2021)	Experiment	40-100	8-30	Brine	1.66-9.61
Amin et al. (2020)	ANFIS and evolutionary algorithms	0-200	0.1-49.3	Brine	0.139-1.95
Ahmadi et al. (2020)	Experiment	25-80	2.074-18.533	Water	1.68-7.22
Reza et al. (2013)	Experiment and modeling	32-50	5.9-6.9	Brine	3.52-6.16
Zarghami et al. (2017)	Pressure attenuation method	50-75	17.45	Water/Brine	3.6-5.3
Zhang et al. (2023b)	Pressure attenuation method	13-30	0.1-5	Brine	0.126-1.730

Notes: Multilayer perceptron (MLP); Molecular dynamics (MD); Adaptive neuro-fuzzy inference system (ANFIS).

Table S2. Research on the sealing performance and safety monitoring of the caprock.

Caprock seal integrity	Temperature (°C)	Pressure (MPa)	Formation type	Monitoring methods	Breakthrough pressure
CO ₂ breaks through the capillary tube (Hildenbrand et al., 2004; Li et al., 2005)	35	7.5	Shale	Pressure and temperature sensors	3.6-4.0 MPa
	50(CO ₂)/30(CH ₄)	20	Argillaceous rock	Pressure sensors	CO ₂ : 0.1-4.9 MPa CH ₄ : 0.1-3.6 MPa
	59	7.3	Anhydrite and dolomite	Pressure sensors	N ₂ : More than 30 MPa CO ₂ : 21 MPa
	23±1	20	Limestone and sandstone	NMR, radioactive tracer	Carbonate caps may provide additional CO ₂ storage
CO ₂ dissolves into the caprock (Berne et al., 2010; Cheng et al., 2024; Fani et al., 2024)	50	20.7	Sandstone	SEM, EDX, XRD	Sample porosity increases
	42	16.8	Shale	SEM, EDX, XRD	Shale undergoes chemical reactions under scCO ₂ conditions
	38	9.87	Dolomite	SEM, EDX, XRD	Dolomite dissolves in scCO ₂
	50	12	Shale	NMR, SEM	The breakthrough pressure drops to 22.22%
	60	8	Carbonates and sandstone	SEM, EDX, XRD, Ion Chromatography	The solubility of CO ₂ in solutions of different salinities increases with increasing pressure and decreases with increasing salinity
Clay minerals adsorb CO ₂ (Heller and Zoback, 2014)	40	0.34-5.52	Shale rich in clay	Three-axis compression test	The adsorption capacity of CO ₂ is approximately 2 to 3 times that of CH ₄
	25-45	15-29	Shale, sandstone and limestone (65% clay)	MIP, XRD, SEM	Limestone gas breakthrough pressure in 1.2-2.9 MPa, and mudstone breakthrough pressure in 5-13 MPa

References

Ahmadi, H., Jamialahmadi, M., Soulhani, B. S., et al. Experimental study and modelling on diffusion coefficient of CO₂ in water. *Fluid Phase Equilibria*, 2020, 523: 112584.

Amin, B., Alireza, B., Amir, M., et al. Estimating CO₂-brine diffusivity using hybrid models of ANFIS and evolutionary algorithms. *Engineering Applications of Computational Fluid Mechanics*, 2020, 14(1): 818-834.

Berne, P., Bachaud, P., Fleury, M. Diffusion properties of carbonated caprocks from the Paris Basin. *Oil & Gas Science and Technology*, 2010, 65: 473-484.

Cang, S., Xu, M., Chen, J., et al. Deploying an integrated fiber optic sensing system for seismo-acoustic monitoring: A two-year continuous field trial in Xinfengjiang. *Journal of Marine Science and Engineering*, 2025, 13(2): 368.

Chen, S., You, H., Xu, J., et al. Leakage monitoring of carbon dioxide injection well string using distributed optical fiber sensor. *Petroleum Research*, 2025, 10(1): 166-177.

Cheng, Q., Tang, J., Liu, Y., et al. Capillary sealing capability alteration of shale caprock induced by CO₂-brine-rock interaction: Implication for CO₂ geological storage. *Geoenergy Science and Engineering*, 2024, 241: 213149.

Ding, Z., Guo, H., Liu, K., et al. Advances in distributed optical fiber sensors based on optical frequency-domain reflectometry: A review. *IEEE Sensors Journal*, 2023, 23(22): 26925-26941.

Fani, M., Strand, S., Puntervold, T., et al. Geochemical effects of carbonated water on reservoir and caprock minerals for carbon capture and storage. *Gas Science and Engineering*, 2024, 124: 205246.

Gemeinhardt, H., Sharma, J. Machine-learning-assisted leak detection using distributed temperature and acoustic sensors. *IEEE Sensors Journal*, 2024, 24(2): 1520-1531.

Heller, R., Zoback, M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. *Journal of Unconventional Oil and Gas Resources*, 2014, 8: 14-24.

Hildenbrand, A., Schröder, S., Krooss, B. M., et al. Gas breakthrough experiments on pelitic rocks: Comparative study with N₂, CO₂ and CH₄. *Geofluids*, 2004, 4(1): 61-80.

Kouhi, M. M., Kahzadvand, K., Shahin, M., et al. New connectionist tools for prediction of CO₂ diffusion coefficient in brine at high pressure and temperature-implications for CO₂ sequestration in deep saline aquifers. *Fuel*, 2025, 384: 134000.

Li, S., Dong, M., Li, Z., et al. Gas breakthrough pressure for hydrocarbon reservoir seal rocks: Implications for the security of long-term CO₂ storage in the Weyburn field. *Geofluids*, 2005, 5(4): 326-334.

Li, Y., Liu, J. Distributed fiber optic sensing for hydraulic-fracturing monitoring and diagnostics. *E3S Web of Conferences*, 2019, 118: 02046.

Li, Z., Yuan, L., Sun, G., et al. Experimental determination of CO₂ diffusion coefficient in a brine-saturated core simulating reservoir condition. *Energies*, 2021, 14(3): 540.

Liu, T., Li, Q., Li, X., et al. A critical review of distributed fiber optic sensing applied to geologic carbon dioxide storage. *Greenhouse Gases: Science and Technology*, 2024, 14(4): 676-694.

Lu, W., Guo, H., Chou, I. M., et al. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements. *Geochimica et Cosmochimica Acta*, 2013, 115: 183-204.

Lv, Y., Li, H., Ai, K., et al. Ultra-high resolution ϕ -OFDR strain sensor based on BEOF and PMC-OPC scheme. *Journal of Lightwave Technology*, 2025, 43(5): 2363-2370.

Omran, S., Ghasemi, M., Mahmoodpour, S., et al. Insights from molecular dynamics on CO₂ diffusion coefficient in saline water over a wide range of temperatures, pressures, and salinity: CO₂ geological storage implications. *Journal of Molecular Liquids*, 2022, 345: 117868.

Reza, A., Mohamad, M., Jafari, R. S. M., et al. Measurement and modeling of CO₂ diffusion coefficient in saline aquifer at reservoir conditions. *Central European Journal of Engineering*, 2013, 3(4): 585-594.

Rock, L., Villegas, E. I., Becker, V., et al. Investigation of natural tracers for MMV at the Quest carbon capture and storage project, Alberta, Canada. *Energy Procedia*, 2014, 63: 4191-4198.

Saw, J., Zhu, X., Luo, L., et al. Distributed fiber optic sensing for in-well hydraulic fracture monitoring. *Geoenergy Science and Engineering*, 2025, 250: 213792.

Stephen, H., Jonathan, H., Henning, K., et al. Quest CCS facility: Time-lapse seismic campaigns. *International Journal of Greenhouse Gas Control*, 2022, 117: 103665.

Wang, Q., Yang, Z., Zeng, L., et al. Research on the optimization of continuous gas lift production from multiple wells on the platform. *Processes*, 2025, 13(2): 478.

Zarghami, S., Boukadi, F., Al-Wahaibi, Y. Diffusion of carbon dioxide in formation water as a result of CO₂ enhanced oil recovery and CO₂ sequestration. *Journal of Petroleum Exploration and Production Technology*, 2017, 7(1): 161-168.

Zhang, K., Xie, J., Li, C., et al. A full chain CCS demonstration project in northeast Ordos Basin, China: Operational experience and challenges. *International Journal of Greenhouse Gas Control*, 2016, 50: 218-230.

Zhang, Y., Geng, W., Chen, M., et al. Experimental measurements of the diffusion coefficient and effective diffusion coefficient of CO₂-brine under offshore CO₂ storage conditions. *Energy & Fuels*, 2023, 37(24): 19695-19703.

Zhang, Y., Xue, Z., Park, H., et al. Tracking CO₂ plumes in clay-rich rock by distributed fiber optic strain sensing (DFOSS): A laboratory demonstration. *Water Resources Research*, 2019, 55(1): 856-867.