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Abstract:
Quantitative determination of mineralogy, through laboratory core studies and high-
definition spectroscopic logging, is effective but underutilized due to cost and complexity.
Unconventional formations present additional challenges, such as kerogen presence, hetero-
geneity, and anisotropy. This problem can be addressed by utilizing well logs and thermal
profiling with specialized wrappers, such as multioutput regressor and regressor chain.
Several machine learning models and strategies for combining well logs on multiscale
data from an unconventional formation in West Siberia were tested to predict the mass
and volumetric fractions of minerals obtained from the Litho Scanner. The gradient
boosting regressor, wrapped in a regressor chain and combined with conventional well logs,
demonstrated superior performance in predicting both mineral weight and volume fractions,
effectively capturing the heterogeneity of the rock structure. A comparison between the
machine learning-based model and the Litho Scanner showed an average discrepancy,
measured by the root mean squared error for weight fraction, of 0.026 in the Bazhenov
Formation. The relationship between certain minerals and the thermal properties of the
rock was validated by assessing the importance of thermal core logging data for quartz and
pyrite. Moreover, the volume fraction of the rock matrix, composed of total organic carbon
and other minerals, was predicted more accurately by incorporating thermal core logging
data. The mineral densities, required for obtaining mineral volumes, were determined by
solving an optimization problem. Subsequently, a theoretical model was used to calculate
thermal conductivity from the mineral volume fractions, revealing a significant similarity
between the predicted and experimental values.

1. Introduction
Refining the mineralogy of rocks is essential for studying

reservoir structure and gaining additional insights into rock
properties. Mineral composition serves as a fundamental con-
trol on reservoir properties such as porosity, permeability, and
water saturation, and provides critical context for interpreting
well-logging measurements. Consequently, variations in min-
eral fractions directly influence the effectiveness of oil and gas
field development strategies, as they reflect fundamental shifts

in geological depositional environments and reservoir quality.
In unconventional oil and gas reservoirs, mineralogy as-

sumes a particularly crucial role in determining the rock’s
response to geophysical measurements and its overall reser-
voir quality. A distinctive characteristic of these reservoirs
is the presence of minerals with diverse physical and chem-
ical structures, along with kerogen, which exhibits strong
interrelationships with key thermophysical properties such as
thermal conductivity and specific heat capacity (Clauser and
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Huenges, 1995). These properties are vital for understanding
thermal maturity and hydrocarbon generation potential. When
coupled with the inherent heterogeneity of unconventional
reservoirs, they significantly impact productivity and the ef-
ficiency of enhanced recovery techniques, particularly thermal
methods.

The geological description of a reservoir fundamentally
relies on the incorporation of log data (Serra, 1983). How-
ever, well log analysis presents substantial challenges in
unconventional formations due to pronounced heterogene-
ity and anisotropy, especially in organic-rich source rocks.
While high-definition spectroscopy tools such as Schlum-
berger’s Litho Scanner enable quantitative mineral content
measurement in boreholes, their application remains limited
due to considerable operational costs. Alternatively, labora-
tory techniques on core samples, including X-ray diffraction
(XRD) (Tucker, 1988), X-ray fluorescence (XRF) (Amosova
et al., 2015), atomic emission spectroscopy (Tóth et al., 2017),
thermal analysis (Barshad, 1965), and factor analysis (Kozlov
and Fomina, 2018) provide detailed mineralogical informa-
tion. Nevertheless, despite their accuracy, these methods are
inherently discrete, failing to provide continuous mineralogy
coverage along the wellbore, and represent relatively expensive
procedures.

In response to these limitations, machine learning (ML)
techniques have emerged as powerful tools for enhancing
the interpretation of logging data, offering the potential to
reduce exploration costs while maintaining robust accuracy
(Martin et al., 2021; Kumar et al., 2022). Consequently, well
logs are increasingly employed for rock type determination
(Meshalkin et al., 2020) and mineralogy identification, which
may target either quantitative weight fractions or qualitative
mineral descriptions. The selection of optimal input features,
however, remains an active area of investigation. Although a
common methodology utilizes XRF data as inputs with XRD-
derived mineralogy as targets (Rodriguez-Galiano et al., 2015;
Kodikara et al., 2024; Yang et al., 2024), this approach
faces limitations for continuous formation characterization,
particularly in non-coring intervals. Accordingly, this research
focuses on well-logging curves, which mitigate scale discrep-
ancy issues compared to XRD and offer particular promise in
unconventional formations (Barham and Zainal Abidin, 2023;
Khan and Kirmani, 2024), especially when complemented by
advanced mineralogical data from tools like the Litho Scanner.

Mineralogy detection maintains critical importance for
analyzing low-permeability unconventional reservoirs (Cui
et al., 2022), where identifying complex shale formations
is complicated by inherent heterogeneity. The presence of
minerals such as kerogen and pyrite introduces additional
complexities in volume estimation due to their distinctive
compositions. While previous research has emphasized the
significance of determining the rock matrix in unconventional
reservoirs (Cui et al., 2022; Hu et al., 2023; Yang et al., 2024),
and although Temnikova et al. (2022) developed computational
approaches for the Bazhenov Formation using core analysis, a
significant research gap persists. Specifically, no prior studies
have integrated well-logging with thermal data for mineralogy
prediction in the Bazhenov Formation, thereby establishing the

novelty of the present investigation.
The performance of mineral prediction models exhibits

strong dependence on algorithm selection and hyperparam-
eter configuration, with accurate prediction of certain miner-
als remaining particularly challenging (Nawal et al., 2023).
While traditional regression methods often struggle to cap-
ture nonlinear relationships between rock properties and well
logs in low-porosity shales, more sophisticated approaches
including ensemble methods and artificial neural networks
have demonstrated increasing success (Craddock et al., 2021;
Zhou et al., 2021). Notably, Kim et al. (2020) established
the effectiveness of ML techniques for lithology and min-
eralogy determination, with boosting methods outperforming
traditional approaches due to superior nonlinear modeling
capabilities. Despite these advances, consensus regarding the
optimal algorithm and evaluation metrics remains elusive.
Comparative studies reveal varied outcomes: Park et al. (2021)
identified random forests as most effective for gas-hydrate-
rich sediments, while Nawal et al. (2023) found Elastic Net
superior for clay/carbonate prediction and neural networks op-
timal for quartz. Similarly, Barham and Zainal Abidin (2023)
demonstrated ANN advantages over classical ML algorithms,
while different evaluation metrics - such as root mean squared
error (RMSE), mean absolute error (MAE) and coefficient of
determination (R2) - have been employed across studies Cui
et al. (2022) and Hu et al. (2023). This methodological vari-
ability underscores the necessity of context-specific algorithm
and metric selection based on regional characteristics, input
features, and target minerals.

Furthermore, accurate mineral prediction necessitates ap-
propriate feature selection, with Kodikara et al. (2024) em-
phasizing the critical importance of correlation analysis,
which exhibits significant regional variation. Prediction accu-
racy depends substantially on input feature selection (Nawal
et al., 2023), while proper data preprocessing and hyperparam-
eter tuning remain equally crucial for preventing overfitting
and enhancing model performance. Particularly relevant to
this study, rock-forming minerals in unconventional forma-
tions display substantial variations in thermal properties (Hu
et al., 2023). Quartz, characterized by high thermal conduc-
tivity, contrasts markedly with lower-conductivity minerals
like clays and organic matter, with these thermal disparities
influencing key reservoir management decisions (Clauser and
Huenges, 1995). Nevertheless, direct connections between
thermal data and mineralogy remain inadequately explored in
recent literature.

To address these research gaps, this study aims to de-
velop an effective framework for predicting mineralogical
composition across depth intervals in unconventional forma-
tions, incorporating organic-rich source rocks through machine
learning approaches. The investigation explores the integration
of diverse well logs and thermal profiling data for accu-
rate mineral determination, examines optimal combinations
of conventional well logs with appropriate model selection
and tuning, and demonstrates the derived mineralogy’s con-
tribution to thermal conductivity determination. The outcomes
provide significant implications for unconventional resource
assessment, contributing to advanced tool development in this
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Table 1. Mean (Std) of the mineral weight fractions for each
well based on Litho Scanner measurements.

Well
No.

Mineral

Sid Dol Clc Pyr Cla QFM

1
0.01 0.048 0.048 0.032 0.477 0.383

(0.06) (0.066) (0.078) (0.033) (0.201) (0.209)

2
0.0 0.037 0.035 0.034 0.398 0.493

(0.0) (0.062) (0.068) (0.04) (0.127) (0.132)

3
0.003 0.038 0.03 0.024 0.375 0.514

(0.015) (0.042) (0.06) (0.031) (0.121) (0.124)

domain.
The main contributions of this article are as follows:

• A novel data-driven workflow for predicting multi-
mineral compositions in unconventional reservoirs
through integration of conventional well logs and high-
resolution thermal profiling data.

• First application of this workflow to the Bazhenov Forma-
tion, demonstrating that machine learning models (specif-
ically Gradient Boosting Regressor with Regressor Chain)
accurately predict mineral mass and volume fractions
(RMSE = 0.026) from logging data.

• Comprehensive evaluation of classical tabular learners
under identical blocked cross-validation conditions, con-
firming superior robustness and interpretability of GBR
+ RegressorChain.

• Implementation of a physics-based validation step link-
ing predicted mineral fractions to thermal conductivity
through theoretical compositional modeling with indepen-
dent calibration on hold-out zones.

• Demonstrated enhancement of prediction stability
through thermal profiling integration, reducing volume
fraction RMSE from 0.046 to 0.039, confirming thermal
sensitivity to mineralogical heterogeneity.

2. Methods

2.1 Data
The study area of the oil field is located in West-

ern Siberia (Russia) and is composed of a thick layer
of terrigenous sedimentary cover deposits from the Meso-
Cenozoic age, overlying rocks of the Pre-Jurassic com-
plex. The wells penetrate the Achimov, Bazhenov, Abalak,
and Tyumen Formations, which consist of argillites,
silicites (low-carbonaceous/carbonaceous, clayey), carbon-
ate and siliceous-carbonate low-carbonaceous/carbonaceous
rocks, high-carbonaceous rocks (clayey-siliceous, clayey-
siliceous-carbonate), siltstones, coals, sandstones with car-
bonate cement, as well as thin laminations of sandstones,
siltstones, and argillites (Gavrilov et al., 2015; Chekhonin
et al., 2021; Postnikova et al., 2021). The Bazhenov formation
rocks are organic-rich, with a TOC content of up to 24%.
Details on mineral composition are given in Table 1.

For the experiments conducted in this research, data from
three wells in the oil field were utilized (Table 2). The
dataset includes logs obtained from well-logging methods,
thermal data acquired by contactless optical scanning tech-
niques (Popov et al., 2016), and mineral composition along
with total organic carbon content obtained from the Litho
Scanner tool. Conventional well logs, along with averaged
thermal profiling, the anisotropy coefficient (K), and the rock
matrix structure, are presented in Fig. 1.

In addition to the basic set of well logs, other logging
measurements were included as input features for the predic-
tion of mineralogy, as detailed in Table 3. The weight content
of clay, coal (COA), calcite (CLC), dolomite (DOL), pyrite
(PYR), quartz-feldspar-mica (QFM), and siderite (SID) which
are the outputs of the ML-based model - was measured by
neutron-induced gamma-ray spectrometry logging. The total
weight fractions of the mentioned minerals sum to one.

To enhance the quality and standardization of well-logging
data, a dedicated preprocessing pipeline for LAS files was
implemented. The workflow includes:

• Mnemonic unification: Log identifiers from different data
source were standardized using an internal dictionary to
ensure consistent feature names across wells.

• Data cleaning: Invalid missing-value indicators were re-
placed with NaN; physical outliers beyond predefined
valid ranges were removed; and long intervals with con-
stant values (indicative of sensor artifacts) were filtered
out.

• Unit standardization: All parameters were converted into
a unified measurement system - e.g., borehole diameter
to meters, gamma-ray readings to µR/h (adjusted for
detector type), neutron porosity to standardized porosity
units.

• Depth alignment: All logs were resampled onto a uniform
0.1 m grid to match the vertical sampling of mineralogical
data. The high-resolution thermal profiles (mm scale)
were averaged to this 10 cm step to ensure proper depth
alignment and prevent overfitting to local fluctuations.

• Normalization: Gamma-ray and other skewed features
were transformed using a log-normal distribution fit,
followed by standard scaling within a ±2σ window.

Missing values were handled via hybrid imputation: Iso-
lated gaps shorter than 0.3 m were linearly interpolated,
whereas longer gaps were left as NaN and excluded from the
training blocks to prevent artificial smoothing. All features
were standardized using StandardScaler, with normalization
parameters computed on training wells only to avoid data leak-
age during blocked cross-validation. All preprocessing steps
were implemented as modular functions, allowing selective
application based on the quality of the input data. The final
cleaned and aligned dataset was used for model training and
subsequent blocked cross-validation.

2.2 Method and Theory
The prediction of mineral composition represents a multi-

scale output, and this specific type of regression problem is
referred to as multioutput regression. Thus, the application of



Gainitdinov, B., et al. Advances in Geo-Energy Research, 2026, 19(1): 14-29 17

Table 2. Experimental conditions.

Category Parameter Notation Well-logging method Uncertainty

Well logs

Gamma-Ray GR (API) Gamma-ray spectrometry ±2%

Bulk density RHOZ (g/cm3) Three-detector lithology
density ±0.01 g/cm3

Electrical resistivity RXOZ (Ohm ·m) Array induction tool ±2%

Thermal neutron porosity TNPH (c.u.) Compensated neutron logging ±6%

Photo electric factor PEFZ (b/e) Photoelectric factor tool ±0.8 b/e

Caliper HCAL (mm) Borehole size ±2.5 mm

Compressional slowness DTCO (ms/m) Compressional slowness ±2%

Shear slowness DTSM (ms/m) Shear slowness ±2%

Bulk modulus BMK (GPa) Calculated via sonic and
density logs ±5%

Thermal

Thermal conductivity ∥ λ∥ (W/(m ·K)) Optical scanning technique ±1.5%

Thermal conductivity ⊥ λ⊥ (W/(m ·K)) Optical scanning technique ±1.5%

Thermal diffusivity a (m2/s) Optical scanning technique ±2.0%

Volumetric heat capacity C (J/(m3 ·K)) Calculated as λ∥/a ±2.0%

Thermal anisotropy K (-) Calculated as λ∥/λ⊥

TOC Total organic carbon TOC (%)
Neutron-gamma ray
spectrometry corrected to
pyrolysis (LithoScanner tool)

±2%

Mineralogy

Coal COA (c.u.)

Neutron-gamma ray
spectrometry
(LithoScanner tool)

±2%

Calcite CLC (c.u.)

Dolomite DOL (c.u.)

Pyrite PYR (c.u.)

Quartz-Feldspar-Mica QFM (c.u.)

Siderite SID (c.u.)

wrapper methods serves as a workaround for models to pre-
dict multiple interdependent targets. These wrappers generally
maintain the connections between the outputs, which is crucial
since mineral fractions are dependent on each other. The
Regressor Chain wrapper creates a linear sequence of models,
where the output of each initial model serves as an input
for the subsequent one. This chaining allows each model’s
prediction to influence the next in a sequential manner, thereby
integrating a meaningful dependency structure to efficiently
capture and utilize relationships among the structured multi-
ple outputs. In contrast, a multioutput wrapper, such as the
MultiOutput Regressor, treats outputs as independent and pre-
dicts each target variable separately. Some machine learning
models natively support multiscale outputs (Breiman, 2001;
Hastie et al., 2009; Hall et al., 2008), including K-Neighbors
Regressor and Random Forest.

In this study, we have developed a comprehensive method-
ology for predicting several outputs. This methodology encom-
passes data preprocessing and feature combination, model se-
lection and hyperparameter tuning, an evaluation of each algo-

rithm’s ease of application, and the use of wrapper techniques
for models that do not natively support multiscale predictions
(namely, Gradient Boosting Regressor, LightGBM, CatBoost,
XGBoost.). The models listed above that are inherently capa-
ble of handling multiple outputs were also implemented. This
overall approach contrasts with state-of-the-art methods com-
monly applied for mineralogy prediction from well-logging
data. Moreover, thermal data was incorporated as an input for
several modeling strategies. In this research, RMSE and MAE
were used as evaluation metrics for predicting the minerals’
weight fractions, as defined in Chai and Draxler (2014) (Eqs.
(1) and 2). The metrics were calculated using the mineral
weight fractions from Litho Scanner measurements (wi j) and
the corresponding model predictions (ŵi j), considering various
mineral components (indexed by “ j”) across different depth
intervals (indexed by “i”).

RMSE =

√
1

nm

n

∑
i=1

m

∑
j=1

(wi j − ŵi j)
2 (1)
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Fig. 1. Example of well logging curves and mineralogical composition on 30 m interval.

MAE =
1

nm

n

∑
i=1

m

∑
j=1

|wi j − ŵi j| (2)

RMSE and MAE are widely used in regression tasks for
evaluating model accuracy. RMSE imposes a higher penalty on
large errors due to its quadratic nature, while MAE provides a
linear and more straightforward average error. Together, these
metrics offer comprehensive insights into model performance,
capturing both the magnitude of typical errors and the impact
of significant deviations. This dual assessment is particularly
appropriate for predicting continuous variables such as miner-
alogical composition, where both overall accuracy and extreme
deviations are critical.

The study employed several validation strategies, including
training on one well and predicting on others, as well as
training on two wells and validating on a third. For each
strategy outlined in Section 3.2.1, a systematic input data
selection process was conducted. This included evaluating
model performance with and without the inclusion of thermal
data in addition to conventional well logs.

The output of the Regressor Chain and MultiOutput Re-
gressor models represent predicted mineral mass fractions.
Since mineralogical compositions are by definition composi-
tional (non-negative and summing to one), several approaches
were tested to ensure physically consistent predictions:

• Additive log-ratio (ALR) transformation.

• Softmax/logit mapping.
• Simple post-scaling normalization.
• Euclidean simplex projection following the algorithm of

(Wang and Carreira-Perpinan, 2013).
Models that natively support multi-output regression are

capable of predicting mineral fractions in a manner that con-
strains their sum to unity. This inherent capability represents
an advantage over wrapper-based approaches, which may
not automatically preserve such physical constraints in the
predictions.

The workflow for mineral prediction and subsequent uti-
lization of the model output for thermal conductivity (TC)
calculation is presented in Fig. 2.

Fig. 2(a) corresponds to the best strategy selection for
mineral weight fraction prediction in terms of the model and
data combination. Among the available thermal profiling and
well logging data, the best parameters are chosen (Section
4.1). To assess the best model several strong tabular baselines
were implemented under the same experimental setup. These
included Random Forest, LightGBM, CatBoost, XGBoost,
and k-Nearest Neighbors (KNN) regressors. The best model
and set of well logs are further used in Fig. 2(b) for the
prediction of mineral volume fractions, which are required for
the calculation of TC via a theoretical model. The thermal
properties of the rock are highly dependent on the presence of
kerogen. The conversion of mass to volume fractions is com-
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Table 3. Additional well logging data participating in
mineralogy determination.

Type Model

HCGR Computed gamma-ray (API)

DSTST Stoneley slowness (ms/m)

VPVS Compressional to shear ratio
(-)

DTSH Stoneley shear slowness
(ms/m)

FSH_P1NO Fast shear azimuth (deg)

AT 90 Resistivity at 90 inch radial
midpoint (Ohm·m)

AT 60 Resistivity at 60 inch radial
midpoint (Ohm·m)

AT 20 Resistivity at 20 inch radial
midpoint (Ohm·m)

HSGR Total gamma-ray (API)

PR Poisson ratio (-)

MRP_LHR Magnetic resonance porosity
(-)

BFV_LHR Bound fluid volume for lower
high-resolution antenna (-)

MAXXENE_OVERALL Maximum cross-dipole energy
(-)

MINXENE_OVERALL Minimum cross-dipole energy
(-)

pleted using bulk density, TOC, parameter S, and mineral
densities, as described in Section 3.2.2. Thus, at this stage,
it is verified whether the addition of thermal profiling to well
logging data improves the results. In Fig. 2(c), the application
of the theoretical model is considered (Section 3.2.3) for the
calculation of TC based on predicted volume fractions and
input data from Fig. 2(b). The result is finally compared to
the parallel component of the TC tensor.

2.2.1 Strategies for mineral weight fraction prediction

The development of strategies was based on available data,
comprising well logging, thermal profiling data, and mineral
weight content, including kerogen. The first three strategies
were designed for cases where the model was trained and
tested on a single well, i.e., a case of data scarcity; one can
see the considered strategies below:

• It is composed of various types of well logs, includ-
ing conventional logs, Array-Sonic logs, and advanced
logging techniques such as Nuclear Magnetic Reso-
nance profiles and Electrical Microimager. Additionally,
petrophysical property measurements, along with mineral
weight content, were utilized for both training and testing
purposes;

• The training and testing of the model were performed
using exclusively conventional well logging data. The
selection of these logs was based on importance measure-

ments, which determined their significant contribution to
the predictive model (see Section 2 for details);

• Building upon strategy 2 by incorporating thermal data
into the previous scenario.

The remaining strategies use two wells for training and one
for testing:

• Utilizing two wells for training and one well for testing,
with only conventional well logging data as input;

• Improving upon strategy 4 by compositional correction
via Euclidean projection onto the simplex;

• Extending strategy 5 by adding thermal data to the
analysis.

See the results of each strategy prediction in Section 4.

2.2.2 Model validation and data splitting

To ensure a realistic depth-wise validation and avoid op-
timistic bias due to autocorrelation along depth, we imple-
mented blocked cross-validation (blocked CV) within each
well.

For strategies 1-3 (see Section 2.2.1) (where a single well
was used for both training and testing), the well depth was
divided into non-overlapping blocks of 10-20 m, separated by
gap zones of 4 m to eliminate correlation between neighboring
intervals (Fig. 3). At each CV iteration, one block was used
for validation, while the remaining blocks served as training.
Additionally, several small depth intervals were reserved as
"physics" regions, used exclusively for calibrating mineral
densities and thermal conductivities (see Sections 2.2.3 and
2.2.4).

For strategies 4-6 (two training wells and one held-out test
well), the blocked CV was applied only within the training
wells to tune hyperparameters of the model (Fig. 4). The final
model was then retrained on all training blocks (excluding
“physics” intervals) and evaluated on the held-out well.

This design guarantees that no depth intervals adjacent in
depth or belonging to the same physical calibration region
contribute simultaneously to training and validation, ensuring
a clean separation between data used for model fitting, hyper-
parameter tuning, and physical parameter calibration.

2.2.3 Mineral density estimation

Mineral densities are needed to convert mineral masses
into volumes. Often, the lack of this information leads to the
search for methods for estimating densities. In this paper, a
mathematical optimization method was proposed (Alekseev
and Gavrilov, 2019). To a reasonable approximation, the fluid-
saturated rock of an unconventional reservoir consists of the
fluid itself, a matrix of minerals, and organic matter, mainly
kerogen. Therefore, bulk density (ρb) can be represented as
in Eq. (3). The provided data includes fluid density (ρ f =
0.6 g/cm3), porosity (φ ), kerogen density (ρk = 1.4 g/cm3)
(Dang et al., 2016), volume fraction of kerogen (ck), and
mineral matrix density (ρm). The volume fraction of kerogen
is calculated using Eq. (4), where TOC is the amount of
organic carbon present in a source rock (expressed as a weight
percent), used as a proxy for the total amount of organic matter
(kerogen) present in the sediment, and parameter p is the mass
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content of carbon in hydrocarbons (Hantschel and Kauer-
auf, 2009) (p = 0.87). Based on Eqs. (3) and 4, an expression
for the density of minerals has been obtained, Eq. (5):

ρb = ρ f φ +ρkck +ρm(1−φ − ck) (3)

ck =
TOC
100p

ρb

ρk
(4)

ρm =

ρb −ρ f φ −ρb
TOC
100p

1−φ − TOC
100p

ρb

ρk

(5)

The objective function for determining mineral densities
(ρi, where i is the mineral index) and rock porosity by depth
( j index) is presented in Eq. (6). To solve the optimization
problem, the trust-region constrained algorithm (Trust-constr)
(Conn et al., 2000) was applied within the following ranges of
acceptable values: φ ∈ [0,0.25], ρker ∈ [1.1,1.3], ρcla ∈ [2.5,3],
ρclc ∈ [2.5,2.7], ρdol ∈ [2.6,2.9], ρpyr ∈ [4.5,5.1], ρQFM ∈
[2.2,3.3], ρsid ∈ [3.7,3.9].

min
ρi,φ

n

∑
j=1

(
k

∑
i=1

wi jρm j

ρi
−1

)2

(6)

The optimization of mineral densities ρm j was performed
exclusively on the designated hold-out intervals, which were
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Fig. 5. SHAP summary plot showing global feature importance
across all predicted minerals.

separated from both training and validation blocks (see Fig.
4). This ensures that the density calibration does not influence
the ML model training or evaluation and thus maintains the
independence of the physics-based verification step.

2.2.4 Thermal conductivity calculation

As mentioned earlier, to evaluate the accuracy of min-
eral volume fraction prediction, the study applied a theoret-
ical model (Eq. (7)) commonly used for assessing thermal
conductivity based on model predictions. Thus, the model’s
performance can be evaluated not only by checking RMSE
and MAE but also by examining the results of a subtask
utilizing the model outputs. To account for the difference in
spatial resolution between the optical scanning instrument and

well-logging tools, the initial 1-mm thermal profiling data was
averaged using a 50-cm moving window. The average porosity
value along the depth is below 4%, and as a result, it was
ignored in the formula for thermal conductivity calculation:

λe f f = λ
Vker
ker

N

∏
i=1

λ
Vi
i (7)

where Vker and Vi are the kerogen and i-th mineral component
volume fractions, respectively; λe f f , λker and λi are the thermal
conductivity (TC) of the effective rock, kerogen, and i-th com-
ponent of the rock matrix, respectively. The TC of minerals is
chosen to minimize the discrepancy between the experimental
TC curve and the TC calculated from model predictions;
these values are determined within predefined ranges: Csid ∈
[3.0,3.1], Cdol ∈ [4.9,6.3], Cclc ∈ [3.1,3.6], Cpyr ∈ [19.2,41.4],
Ccla ∈ [1.2,2.7], CQFM ∈ [2.1,7.6] (Sass, 1965; Horai, 1971;
Beck et al., 1978; Popov et al., 1987).

It is essential to note that the TC of the QFM min-
eral component varies between areas inside and outside the
Bazhenov Formation. The optimal TC value was chosen based
on these considerations. Moreover, we applied a curve smooth-
ing approach using the Fast Fourier Transform technique
(Brigham, 1988) to the experimental TC, the TC calculated
from Litho Scanner measurements, and the model predictions.
The smoothed curves exhibit enhanced clarity, reduced local
variations, and better focus on trends. This enables more
accurate analysis and interpretation of the data, providing
valuable insights into the material’s thermal properties.

3. Results

3.1 Optimal strategy selection
To assess the influence of different well logs on the

prediction of mineral compositions, feature selection was
performed on the full set of input data (Fig. 5), including
both conventional and additional well logs (Tables 2 and 3).
To improve interpretability and ensure that the ML model
captures physically meaningful dependencies, SHAP analysis
was performed on the GradientBoosting + RegressorChain
model. Fig. 5 illustrates the relative importance of each fea-
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Fig. 6. SHAP summary plot for Pyrite illustrating key petro-
physical controls on mineral variability.

ture in the model’s output. The SHAP analysis confirms
that total gamma-ray (HSGR), bulk density (RHOZ), and
sonic velocity (DTCO) are the dominant features across most
minerals, in line with known petrophysical trends. Moreover,
all conventional well logging measurements demonstrate high
SHAP values. Based on these findings and typical standard
well measurements conducted in the Bazhenov Formation, the
final set of well logs was selected (Table 2).

As discussed earlier, specific minerals are closely tied to
the thermal properties of the rock. To validate this for quartz
and pyrite, SHAP analysis revealed that the perpendicular
component of thermal conductivity had a more significant
influence on model predictions for these minerals than for
others. The SHAP plot (Figs. 6 and 7) illustrates the dominant
role of thermal properties in determining quartz and pyrite
concentrations, reinforcing their importance in the study of
complex carbonate reservoirs. Pyrite prediction is primarily
driven by DTCO and PEFZ, whereas QFM is governed by
HCGR, and neutron-density logs. Thermal and cross-dipole
energy attributes show secondary influence, particularly at
greater depths, suggesting their role in modulating anisotropy
and siderite variability. These relationships demonstrate that
the model captures physically meaningful dependencies rather
than statistical artifacts.

Based on the importance of selected features and the
logs used by Kim et al. (2020), the parameters for heatmap
construction were chosen to compare with their findings. The
correlation largely aligns, with some exceptions. The heatmap
(Fig. 8) shows a positive relationship between DTSO and
TNPH, GR, calcite, and pyrite, while it exhibits a negative
correlation with RHOZ, dolomite, and total clay.

This confirms that conventional well logs capture the trends
of mineralogy variation and show a clear correlation between
well logs and mineralogy content, as also indicated by Hu
et al. (2023). Furthermore, Fig. 1 reveals that increasing
QFM and decreasing clay content correlate with lower TNPH,
DTCO, and PEFZ values and an increase in BMK. A rise in
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Fig. 7. SHAP summary plot for QFM illustrating key petro-
physical controls on mineral variability.

pyrite content reflects similar oscillations in the anisotropy
coefficient, while variations in calcite and dolomite fractions
are associated with RXOZ, PEFZ, and RHOZ.

The prediction results for the strategies (see Section 3.1)
are presented in Table 4, which shows the model performance
for each case. The metrics in the table represent the mean
MAE and RMSE values for both blocked CV strategy and
held-out test well for the weight fraction prediction of all six
mineral classes.

The blocked CV procedure reduced the risk of overfitting
to depth-contiguous intervals and provided more conserva-
tive RMSE and MAE estimates. Consistent trends were ob-
served across strategies: Intra-well validation (strategies 1-3)
produced lower apparent RMSE, while inter-well evaluation
(strategies 4-6) yielded higher but more realistic macro-RMSE
values, confirming that the model generalizes beyond individ-
ual well depth profiles.

To evaluate the influence of compositional enforcement on
model performance, several transformations (ALR, softmax,
normalization, and Euclidean projection) (see Section 2.2)
were tested on the same training/validation setup for the 5th
strategy. The ALR and softmax transforms did not improve
accuracy and in some cases led to unstable training on the
limited dataset. In contrast, the simple normalization and the
Euclidean simplex projection improved the predictive accuracy
while strictly enforcing compositional validity (wi ≥ 0, ∑wi =
1, where wi is the ith mineral mass fraction). Therefore,
in the final workflow the Euclidean simplex projection was
adopted as the standard post-processing step applied to all
model outputs. The prediction results of Strategy 5 are shown
in Fig. 9. The compositional projection slightly sharpens
relative proportions but does not alter overall mineral trends
with depth, confirming that the base model already captures
correct relative relationships, and the adjustment serves mainly
to enforce formal compositional consistency. The predicted
mineral composition is very close to the actual composition
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Table 4. Comparison of model performance for weight
fraction prediction across ablation strategies.

Strategy Blocked
CV MAE

Blocked
CV RMSE

Held-out
well MAE

Held-out
well
RMSE

1 0.0214 0.0297 / /

2 0.0231 0.0327 / /

3 0.0234 0.0312 / /

4 0.0235 0.0371 0.028 0.038

5 0.0218 0.0333 0.026 0.035

6 0.0217 0.0322 0.025 0.034

Notes: Strategies 1-3 single train-test well, while strategies 4-
6 use 2 train and 1 held-out test well. Strategy 5 (GBR. +
RegressorChain) yields the lowest overall RMSE.

Table 5. Comparison of Basic algorithms for the 5th strategy.

Algorithm Blocked
CV RMSE

Blocked
CV MAE

Held-out
well
RMSE

Held-out
well
MAE

GBR 0.0333 0.0218 0.035 0.026

LGBM 0.0344 0.0236 0.0338 0.0265

CB 0.032 0.0214 0.0357 0.0268

XGB 0.0331 0.0228 0.0357 0.025

RF 0.035 0.0241 0.036 0.0273

KNN 0.0363 0.0242 0.0423 0.0299

obtained via Litho Scanner. At certain depth intervals, the
difference between the actual measurement and the prediction
can be up to 20%, but the average deviation does not exceed
2%. The predicted values also accurately replicate the trend of
mineral composition with depth, indicating sensitivity to rock
type.

Addition of thermal data for prediction of mineral weight
fraction as for the 6th strategy doesn’t give significant improve-
ments in comparison to previous strategy.

In the process of model selection, several machine learning
algorithms were evaluated, including GradientBoostingRegres-
sor (GBR), LightGBM (LGBM), CatBoost (CB), XGBoost,
K-Nearest Neighbors (KNN) and Random Forest (RF). All
models were trained following the 5th strategy (two training
wells, one held-out test well) and validated using the same
blocked cross-validation scheme within the training wells. The
evaluation metrics were RMSE and MAE, computed both for
blocked CV folds and for the held-out test well to ensure
fair comparison (Table 5). Hyperparameters were tuned within
conservative ranges using blocked CV to prevent overfitting to
depth-wise correlations. The results indicate that all ensemble-
based learners perform comparably in terms of blocked CV
RMSE (≈0.033-0.035) and held-out well RMSE (≈0.033-
0.036), while the Gradient Boosting Regressor (GBR) slightly

Table 6. Comparison of mineral weight fraction predictions
for GBR (Strategy 5) in terms of R2 and RMSE.

Mineral R2 RMSE

Cla 0.959 0.043

Clc 0.956 0.019

Dol 0.792 0.023

Pyr 0.958 0.008

QFM 0.946 0.044

Sid 0.774 0.009

outperforms other methods in both metrics. CatBoost and
LightGBM show close performance but with slightly higher
variance across validation folds, whereas K-nearest neighbor
regression degrades on the held-out well due to its local, non-
parametric nature.

Given the small dataset and strong inter-feature correlations
typical of well-log data, the GBR-RegressorChain combination
offers a robust trade-off between accuracy, interpretability,
and stability. Unlike CatBoost or LightGBM, which internally
encode categorical structure, GBR allows explicit feature im-
portance and SHAP-based interpretability analysis, facilitating
physical interpretation of input contributions. Therefore, GBR
+ RegressorChain was retained as the primary model for all
subsequent compositional and thermal-conductivity analyses.

As mentioned above, each output label was predicted sep-
arately. The prediction quality for each mineral was evaluated
using R2 and RMSE (see Table 6). Clay and QFM show the
highest RMSE values for weight fraction prediction.

For the implementation of the algorithm, Python and
Scikit-learn’s GradientBoostingRegressor were used, while
RegressorChain was provided by the Multioutput module of
Scikit-learn. The model, trained using a GradientBoostingRe-
gressor wrapped in a RegressorChain, was run on a dataset
with 51 features (including thermal data) for approximately
400 m depth interval with a measurement resolution of 10
cm and with 6 mineralogical output targets, and tested on
a 200 m depth interval. For the GradientBoostingRegressor
wrapped in a RegressorChain, key hyperparameters include
the learning rate, max depth, max features, and the number of
estimators. To validate the robustness of the machine learning
model and reduce the risk of overfitting, 5-fold cross-validation
was implemented using GridSearchCV. The resulting optimal
values were: Learning rate of 0.01, max depth of 5, sqrt for
max features, and 50 estimators. The training process utilized
approximately 120 MB of memory and was CPU-bound.

3.2 Thermal conductivity calculation
Prior to the thermal conductivity assessment, the model

was retrained using volumetric mineral fractions as target
variables. These fractions were obtained by converting ground-
truth weight fractions from the Litho Scanner using min-
eral densities calibrated exclusively on the hold-out intervals,
which were separated from both training and validation blocks.
This ensures that the conversion parameters were tuned inde-
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Fig. 10. The prediction of mineral volume fractions with and without thermal data for the held-out well.

Table 7. Customized densities and TC of minerals.

Mineral
Optimal
density
(g/cm3)

Density
ranges
(-)

Thermal
conductivity
(W/(m·K))

Thermal
conductivity
ranges (-)

Sid 3.8 (3.7, 3.9) 3.1 (3.0, 3.1)

Dol 2.8 (2.6, 2.9) 5.3 (4.9, 6.3)

Clc 2.6 (2.5, 2.7) 3.1 (3.1, 3.6)

Pyr 4.8 (4.5, 5.1) 24.8 (19.2, 41.4)

Cla 2.6 (2.5, 3.0) 1.5 (1.2, 2.7)

QFM 2.5 (2.2, 3.3) 3.8; 3.3* (2.1, 7.6*)

Notes: * Upper limit for TC of QFM minerals within the
Bazhenov formation (3.3 W/(m·K)) is less than outside it
(7.6 W/(m·K)) because lack of high-conductive quartz in the
Bazhenov formation.

Table 8. RMSE for experimental TC vs TC calculated based
on model volume fraction prediction and TC of minerals

calibrated on a hold-out zones/test well.

Formation Calibration on test
well

Calibration on
hold-out zones

Bazhenov 0.052 0.079

Abalak 0.170 0.132

Tyumen 0.243 0.154

pendently of the ML model, maintaining the integrity of the
physics-based validation. Consequently, the model predicted

volumetric mineral fractions directly rather than through post
hoc conversion from weight fractions, providing a consistent
foundation for the subsequent thermal conductivity analysis.

As a result, the initial focus was on identifying the optimal
approach for predicting these volume fractions. Given that
the presence of TOC plays a crucial role in defining the
thermal properties of the rock, the reciprocal relationship was
also considered. Therefore, an investigation was undertaken to
assess how the inclusion of supplementary thermal data could
enhance the accuracy of mineral volume fraction predictions.
Fig. 10 displays the comparative predictions of mineral volume
fractions for the first well, both with and without the incor-
poration of thermal data. The predictions exhibit enhancement
with the incorporation of supplementary thermal profiling data.
Specifically, the RMSE decreases to 0.039 when thermal data
is included, as opposed to 0.046 without its inclusion. With
the necessary input data and model selection criteria in place
for achieving accurate predictions of mass and volume mineral
composition, albeit with certain variations at specific intervals,
the focus shifts to assessing the model’s efficacy beyond
evaluation solely based on RMSE and MAE. To explore
the model’s performance more comprehensively and link the
rock’s thermal component with mineralogy in unconventional
reservoirs, predictions were extended to a sub-task involving
the calculation of thermal conductivity. The densities and ther-
mal conductivities (TC) of individual minerals were optimized
only within the hold-out calibration intervals by minimizing
the discrepancy between the experimental TC (measured via
Optical Scanning) and the TC calculated from Litho Scanner-
based mineral compositions (Fig. 11). The optimization was
constrained within reference ranges of literature values and
did not use any intervals from the test well, ensuring the inde-
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Fig. 11. Parallel thermal conductivity from core measurements
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tions of minerals based on calibrated mineral densities on a
train well.

pendence of the physical parameter fitting from model vali-
dation. The obtained mineral parameters (Table 7) were then
applied unchanged to predict TC on the held-out test well,
allowing for a fully independent physics-based comparison.
For a blind-well three configurations were considered: Cali-
brated TC of minerals on a hold-out zones, test-calibrated TC
of minerals fitted on the test well to minimize RMSE (reported
only as an upper bound) and laboratory values of effective TC,
see Fig. 12.

The results confirm that the calibration performed on hold-
out intervals is transferable: The agreement between predicted
and measured TC remains consistent across the blind test well.

To evaluate the robustness of the thermal-conductivity cal-
culation with respect to uncertainties in mineral properties, we
performed a sensitivity analysis varying thermal conductivities
of key minerals within their reference ranges. Fig. 13 presents
a tornado plot illustrating the influence of ±10 % variations in
each parameter on the resulting effective thermal conductivity
λe f f . The analysis reveals that the model is most sensitive to
the thermal conductivities of clay and quartz. However, even
under ±10% variations within geologically plausible limits,
the RMSE between the calculated and experimental λe f f did
not exceed 0.1 W/(m*K), confirming the robustness of the
proposed calibration and the independence of the physics-
based verification step.

4. Discussions and conclusions
A novel approach was developed for determining the

mineralogical composition of the rock structure in the West
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Fig. 12. Parallel thermal conductivity from core measurements
vs calculated thermal conductivity from predicted volume
fractions based on calibrated TC of minerals on hold-out
zones/test well.

Siberian oil field and the Bazhenov Formation, which is asso-
ciated with unconventional reservoirs, using conventional well
logs and thermal profiling data. The relationship between min-
eralogy and the thermal component of the rock was validated
through subsequent calculation of thermal conductivity based
on a proven theoretical model. The research involved applying
a tailored methodology for data preparation and integration,
selecting appropriate models, and optimizing hyperparameters,
while comparing the effectiveness of each algorithm.

The evaluation of the model utilized Litho Scanner mea-
surements as target values, representing the mineral content
(w/w) comprising clay, calcite, dolomite, pyrite, coal, quartz-
feldspar-mica, and siderite. Various prediction strategies were
developed using different datasets and models (KNeighbors,
Random Forest, LightGBM, XGBoost, CatBoost, Gradient-
BoostingRegressor) organized into Multioutput Regressor and
Regressor Chain frameworks. Despite comparable numerical
performance of other tree-based baselines (CatBoost, Light-
GBM, XGBoost), the GBR + RegressorChain model provided
more stable predictions across depth-blocked folds and supe-
rior interpretability, making it the most suitable choice for the
compositional regression task given the limited dataset.

This is particularly important for unconventional reservoirs,
where certain minerals may influence the formation and de-
position of others. To ensure that the model appropriately
weights significant variables, such as thermal properties and
conventional well logs suitable for mineralogy determination,
the assessment of feature importance was conducted using
the SHAP technique. Based on these findings, the input
well logs were selected with consideration of standard well
measurements typically conducted in the Bazhenov Formation.
Consequently, the following logging curves were utilized as
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input: GR, RHOZ, RXOZ, HCAL, TNPH, PEFZ, DTCO,
DTSM, and BMK. Additionally, the mineral fractions were
found to have a significant impact on thermal properties. This
was demonstrated by assessing Shapley values, where the
perpendicular component of thermal conductivity was among
the top 9 and top 12 important features for quartz and pyrite,
respectively. To avoid overfitting, GridSearch was utilized
with 5-fold cross-validation; in addition, GradientBoostingRe-
gressor incorporates built-in regularization mechanisms by
controlling the learning rate, which was set to 0.01 after grid
search optimization.

While the model is data-driven, the selection of input
features along with thermal conductivities of minerals was
guided by geological knowledge, particularly the importance
of these parameters in predicting mineral distributions in the
Bazhenov Formation.

Several strategies for combining input data were developed.
In cases of data scarcity, more robust approaches, such as
data augmentation, are required. However, the GradientBoost-
ingRegressor wrapped in a RegressorChain proved to be the
most stable in terms of RMSE and MAE. Dry-weight fractions
were accurately predicted, with the best RMSE reaching 0.026
for strategies involving two training wells and one blind well.
This result demonstrates that using conventional well logs as
input features enables the model to capture trends in mineral
weight fractions effectively in highly heterogeneous reservoirs.
The ablation results confirm that the inclusion of thermal-
related logs does not contribute significantly to predictive
accuracy of dry-weight fractions.

The conversion of mineral weight fractions to volume
fractions was performed using the TOC parameter, which,
along with certain minerals, is strongly correlated with the
rock’s thermal properties. Incorporating thermal profiling data
alongside conventional logging data as input to the model
resulted in improved predictions of mineral volume fractions,
reducing the RMSE from 0.046 to 0.039.

Furthermore, the outcomes derived from the model predic-

tions (with additional thermal data), i.e., volumetric mineral
fractions, were used in the theoretical model for TC calcula-
tion. The comparison of calculated and measured TC values
revealed that the ML models exhibited substantial accuracy,
indicating their suitability for leveraging mineral component
predictions in reservoir characterization efforts.

Moreover, separating the calibration of mineral densities
and thermal conductivities onto dedicated hold-out intervals
and validating on a blind test well ensured that the physics-
based verification remained independent of the ML train-
ing process. The additional sensitivity analysis demonstrated
that even substantial parameter perturbations within reference
ranges result in minimal changes (δRMSE < 0.1 W/m*K),
confirming the overall robustness and generalizability of the
workflow.

When rocks contain numerous minerals with variable sizes,
textures, and structures, well logging data combined with ther-
mal profiling are sufficient for accurate mineralogy prediction
and utilization of results for subsequent subtasks. However,
it is suggested to use additional data such as XRD/XRF,
which have higher resolution and can provide valuable insights
into mineral component modeling, particularly when data are
scarce. Subsequent efforts will focus on refining the model’s
performance, particularly for clay and quartz, with the objec-
tive of identifying inherent patterns within heterogeneous and
anisotropic rock formations.

The developed approach requires validation on other un-
conventional reservoirs with similar rock properties and com-
parable input variables. Caution is advised when applying
this method to estimate mineralogy at new sites, as mineral
types and associations may vary due to differences in climatic
conditions, local geology, and primary sediment sources. For
cases of data scarcity, it is suggested to use data augmentation,
which was not implemented in this study.

The application of the developed model has practical
significance for geological modeling, facies analysis, reser-
voir rock characterization, and optimization of enhanced oil
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recovery methods. Future applications could include real-time
decision-making during drilling, identifying sweet spots in
unconventional formations by analyzing mineralogy variations
in rocks based on logging curves typically available during
well measurements in West Siberian oil fields. This is ben-
eficial for both reservoir engineers and petrophysicists and
could reduce economic costs associated with additional well-
logging operations. For petroleum engineers, the focus should
be on how the model enhances geological understanding
and supports field operations. Moreover, it highlights the
innovative application of the GradientBoostingRegressor with
RegressorChain and how it can be adapted to other fields
dealing with heterogeneous and sparse data.
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