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Abstract:
Foam effects in multiphase flow are commonly modeled as a mobility reduction factor that
scales gas mobility. Conventional parameter estimation relies on prior relative permeability
functions, introducing epistemic uncertainties that propagate to foam characterization. In
this work, an alternative mobility reduction factor formulation expressed solely in terms
of pressure drop measurements is derived, eliminating the need for relative permeability
assumptions and directly aligning with the modeling hypothesis of gas-only mobility
reduction. The approach is evaluated using synthetic foam-quality scan datasets at multiple
surfactant concentrations. Profile likelihood analysis shows that the proposed formulation
preserves parameter identifiability relative to conventional methods based on apparent
viscosity. Robustness is assessed under both correct and misspecified relative permeability
models, with the Lomeland-Ebeltoft-Thomas formulation used for data generation and
Brooks-Corey curves for parameter estimation. Systematic sampling of relative permeabil-
ity parameters further demonstrates that, even when the model structure is correct, the
proposed mobility reduction factor reduces estimation errors by confining uncertainties
to the foam component only. These results establish the new mobility reduction factor
definition as a reliable and practical metric for quantifying foam strength in laboratory
experiments and for improving parameter estimation in implicit-texture models.

1. Introduction
Subsurface engineering processes that rely on gas injection

may face effectiveness issues with the gas phase high mobility.
The mobility contrast with resident liquids triggers viscous
fingering and gravity override, which in turn yield early
breakthrough and poor sweep efficiency. Rock heterogeneity
further channels flow through high-permeability pathways,
leaving low-permeability zones unswept (Lake, 1988; Shafiei
et al., 2024). Foam, a liquid phase trapping dispersed gas
stabilized by surfactant, provides a mechanism to mitigate
these effects (Tripathi et al., 2024; Wang et al., 2025). It

replaces continuous gas with discontinuous bubbles, provid-
ing mobility control to divert gas into previously bypassed
zones, enhancing volumetric sweep efficiency, and ultimately
improving the performance of subsurface operations (Kovscek
and Radke, 1994).

Predicting foam behavior at the core scale is critical for
transferring laboratory insights to the field (Ma et al., 2015).
Numerical simulators such as CMG-STARS (by Computa-
tional Modeling Group) represent foam effects through a
mobility reduction factor (MRF) that multiplies down gas mo-
bility. In principle, this aligns with the widely accepted view
that foam mainly suppresses gas flow (Bernard and Jacobs,
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1965; Kovscek and Radke, 1994; Rossen, 1996; Eftekhari and
Farajzadeh, 2017). In this context, foam strength refers to the
foam ability to reduce gas mobility, a property significantly
influenced by foam quality (the gas fraction in the injected
fluid). Experimentally (Osterloh and Jante, 1992; Rossen,
1996), foam strength has been observed to increase with foam
quality, but it begins to decline at high gas fractions due
to dry-out effects. Foam strength is usually assessed through
apparent viscosity, which correlates with pressure drop and
is affected by both gas and liquid phases (Farajzadeh et al.,
2015; Eftekhari and Farajzadeh, 2017). However, experimental
formulations of MRF do not clearly distinguish the reduction
in gas-phase mobility, which makes it inconsistent with the
modeling assumption of gas-only mobility reduction, compli-
cating parameter estimation (Lotfollahi et al., 2016).

Most approaches, therefore, rely on relative permeability
functions to disentangle phase contributions (Ma et al., 2014).
Yet relative permeability estimation is itself uncertain and
strongly affects the identifiability of foam parameters (Zeng
et al., 2016; Cavalcante Filho et al., 2017; de Miranda et al.,
2024; Ribeiro et al., 2024). This creates a two-layer uncertainty
source: First in relative permeability, then in foam characteri-
zation.

In this work, an alternative formulation of the MRF that
isolates the gas-phase contribution directly is proposed, elimi-
nating the need for relative permeability functions. The method
is derived algebraically from the steady-state experimental
definition of MRF, producing a gas-specific expression consis-
tent with simulator formulations such as CMG-STARS. Then
its performance is evaluated for parameter estimation using
synthetic foam-quality scans, comparing it against the con-
ventional apparent-viscosity-based objective function. Identi-
fiability and robustness are assessed under both correct and
misspecified relative permeability models, highlighting how
the proposed definition confines the uncertainty to the foam
parameters alone.

2. Mathematical modeling
The foam flow in porous media can be modeled by a

multiphase system with surfactant transport, where phases are
assumed to be incompressible and immiscible. The system in-
volves mass conservation for each phase, flow relationships for
phase velocities, and transport of surfactant. Phase saturations
are denoted by Sα , velocities by uα , where for the two-phase
considered here α ∈ {w,g}, and Cs represents the aqueous
surfactant concentration (Zavala et al., 2024). These governing
equations are simplified under the conditions of steady-state
laboratory experiments, where constant inlet fluxes, pressures,
and surfactant concentration are assumed. This reduces the
mass conservation and transport equations to algebraic ex-
pressions (de Miranda et al., 2022; Valdez et al., 2022b).
The homogeneity hypothesis results in spatial invariance of
saturations and concentrations, yielding a constant pressure
drop ∆P, water saturation, and surfactant concentration (Ma
et al., 2013; Eftekhari and Farajzadeh, 2017; Kahrobaei and
Farajzadeh, 2019).

The fractional flow fα of a phase α is defined as the ratio

of the phase velocity to the total velocity of all phases flowing
through the porous medium:

fα =
uα

uT
, uT = ∑

α

uα (1)

where uT is the total superficial velocity in the flow direction.
At steady-state conditions in experimental settings, the appar-
ent viscosity µapp of the system can be calculated as follows:

µapp = λ
−1
T =

K
uT

∆p
L

(2)

where λT is the total mobility, K is the absolute permeability
of the domain, ∆p is the pressure difference, and L is the
length of the core. At steady-state, the fractional flow of each
phase can also be expressed mathematically as the ratio of its
mobility to the total mobility, that is:

fα =
λα

λT
(3)

where the phase mobility is given by λα = krα/µα , and
depends on relative permeability krα and viscosity µα of phase
α .

2.1 Relative permeability
Relative permeabilities are usually described either by

the Brooks-Corey (Brooks and Corey, 1964) or Lomeland-
Ebeltoft-Thomas (LET) models (Lomeland et al., 2005). With-
out considering foam effects, the Brooks-Corey form for
water-gas flow is given by:

kCorey
rw = k0

rw snw
w , kCorey

rg = k0
rg (1− sw)

ng (4)
with the normalized water saturation defined by:

sw =
Sw −Swc

1−Swc −Sgr
(5)

where nw and ng are the Corey exponents.
The LET functions for relative permeability (Lomeland

et al., 2005), which offer more flexibility to describe mul-
tiphase flow, are defined as:

kLET
rw = k0

rw
sLw

w

sLw
w +Ew (1− sw)

Tw
(6)

kLET
rg = k0

rg
(1− sw)

Lg

(1− sw)
Lg +Egsw

Tg
(7)

where Lw, Lg control the lower part of the curve, Ew, Eg
determine transition curvature, Tw, Tg characterize upper part
of the curve, and Swc and Sgr denote connate water and residual
gas saturations. In general, the LET correlation functions for
relative permeability provide a better description of the data
(Berg et al., 2021).

2.2 Foam model
The implicit-texture formulation implemented in CMG-

STARS (STARS, 2017) represents foam effects through a
MRF term applied to reduce the gas phase mobility. For water-
gas systems, the apparent viscosity is expressed as:
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µapp =

(
λw +

λg

MRF

)−1

=

(
krw

µw
+

krg

µgMRF

)−1

(8)

while the MRF of the foam apparent viscosity model (STARS)
is given by:

MRF = 1+ fmmob∏
i

Fi (9)

where Fi represent dimensionless functions capturing various
foam destabilization mechanisms. This work considers two
primary effects: The dry-out function Fdry accounting for foam
coalescence at low water saturations, and the surfactant func-
tion Fsur f representing concentration-dependent foam stability.

The dry-out function takes the form:

Fdry(Sw) =
1
2
+

arctan[epdry(Sw − fmdry)]
π

(10)

where fmdry represents an approximation for the critical water
saturation below which foam becomes unstable and collapses,
and epdry controls the sharpness of the transition from the
low- to high-quality regimes (Osterloh and Jante, 1992). The
surfactant concentration effect is modeled as:

Fsur f (Cs) =


(

Cs

fmsurf

)epsurf

if Cs < fmsurf

1 otherwise
(11)

where fmsurf denotes the reference surfactant concentration
and epsurf determines the sensitivity of foam strength to
concentration changes.

Estimation of the parameters for this model relies on
steady-state core flooding experiments conducted at various
foam qualities and surfactant concentrations. The primary
observable is the relationship between apparent viscosity and
injected gas fraction at constant total velocity. As foam quality
increases, the apparent viscosity initially rises due to foam
generation, then decreases beyond a transition quality f ∗g
corresponding to the onset of dry-out conditions. The reference
MRF fmmob scales the overall foam strength and is determined
through history matching of experimental pressure drop and
saturation data (Ma et al., 2013).

2.3 The MRF expression
Since the first application of foam for gas mobility control

(Bond and Holbrook, 1956), the quantification of its mobility-
reduction capability has evolved from empirical correlations
toward a mechanistic understanding (Ma et al., 2015). While
the assumption of foam reducing solely gas-phase mobility
prevails (Bernard and Jacobs, 1965; Eftekhari and Farajzadeh,
2017), modeling approaches in the literature have linked the
experimentally measured ratio of pressure drop with and
without foam (Mohammadi et al., 1995; Chang and Grigg,
1996; Ma et al., 2015). Typically, the MRF is computed using
the following expression:

∆Pfoam

∆Pref
(12)

to characterize foam. However, even approaches assuming
that foam affects solely gas-phase mobility may be misled

by inconsistencies between this modeling assumption and the
classical definition of such ratios during parameter estimation
(Vieira et al., 2024; Hematpur et al., 2025).

According to Rosman and Kam (2009), the MRF is deter-
mined from the pressure drop ratio between the foam and no-
foam conditions in the same rock sample at identical saturation
states. In the literature, however, the no-foam pressure drop
∆Pref has been defined in different ways: Continuous brine
injection (Simjoo et al., 2013; Jia et al., 2024), continuous gas
injection (Bello et al., 2023), or water-gas co-injection (Sri-
Hanamertani et al., 2021; AlYousef et al., 2023). Each condi-
tion yields distinct quantities associated with MRF, hindering
direct comparison of experimental results and complicating
parameter estimation in foam simulators.

2.4 Current parameters estimation procedures
In a steady-state scenario, the relative permeability for

any chosen model can be written in terms of experimentally
measurable quantities:

krα =
µα fα

µapp
(13)

A significant assumption among the methods for foam
parameter fitting relying on apparent viscosity measurements
(Eq. (8)) is that the relative permeability functions are known
prior to analysis (Ma et al., 2013; Eftekhari and Farajzadeh,
2017; Vicard et al., 2022; Valdez et al., 2022b). However, its
accuracy relies on the adequacy of the relative permeability
model and the quality of the data used for parameter fitting;
uncertainties in either the model or its parameters at this stage
inevitably propagate into the foam parameter estimates.

Procedures for foam parameter estimation relying on
steady-state data from a foam-quality scan or flow-rate scan,
without monitoring water saturation experimentally, generally
assume that the relative permeabilities are described by the
modified Brooks-Corey model (Brooks and Corey, 1964). The
experiments provide data points in the form of ( f i

g,µ
i
app). To

evaluate the STARS model for parameter estimation, however,
the corresponding water saturation must be determined for
each given pair ( fg,µapp). Therefore, if the Brooks-Corey
form is assumed, the corresponding water saturation can be
analytically inverted, as proposed by Farajzadeh et al. (2015)
and Eftekhari and Farajzadeh (2017), as follows:

Sw =

[
(1− fg)µw

k0
rw µapp

]1/nw

(1−Swc −Sgr)+Swc (14)

Once Sw is obtained for each pair ( fg,µapp), STARS can
be computed, since it depends on Sw through Fdry(Sw) (Eqs.
(8)-(10)). Since Sw estimation from apparent viscosity data
relies on assumed relative permeability functions (Eq. (14)),
uncertainties in these functions further propagate to parameter
estimation.

The LET relative permeability model described in Eq.
(7), unlike the Brooks-Corey model, cannot be analytically
inverted for saturation, requiring numerical methods for this
inversion. Consequently, its application with the STARS foam
flow model has been limited. In the following, a new ex-
pression to quantify the MRF is introduced, enabling the
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estimation of foam parameters without prior knowledge of,
or assumptions about, the relative permeabilities.

2.5 Derivation of a new MRF expression
In this work, an alternative expression connecting experi-

mental measurements of pressure drop to the MRF term used
in foam models is derived from the formula given in Eq. (12)
following the experimental requirements defined by Rosman
and Kam (2009). The present approach contributes to estab-
lishing a quantity that does not depend on relative permeability
for foam characterization. This is because the empirical effects
in the MRF term depend directly on observable variables and
do not require knowledge of modeling phase mobilities.

Starting from a steady-state flow at the same saturation
levels, the pressure drop ratio between the foam and no-foam
cases is analogous to the ratio between the total mobilities,
which can be expressed as:

∆Pfoam

∆Pref
=

uT L
K

µ
foam
app

uT L
K

µ
ref
app

=
µ

foam
app

µ
ref
app

=
λ

ref
T

λ
foam
T

=
λl +λg

λl +
λg

MRF

(15)

where λl represents liquid phase mobility (water or combined
water-oil in three-phase systems). Next, rearranging to isolate
the foam-induced pressure increment yields the following
expression:

∆Pfoam

∆Pref
−1 =

λl +λg

λl +
λg

MRF

−1

=

λl +λg −
(

λl +
λg

MRF

)
λl +

λg

MRF

=

λg

MRF
(MRF−1)

λl +
λg

MRF

(16)

Normalizing by the steady-state form of the gas fractional
flow fg in presence of foam (Eq. (3)) isolates the contribution
to gas-phase:

MRF = 1+
∆Pfoam −∆Pref

fg ∆Pref
=

∆Pfoam − (1− fg)∆Pref

fg ∆Pref
(17)

The MRF term is designed in implicit-texture foam models
by adding a unitary regularization term to the part modeling
the foam effects in reducing gas mobility, as shown in Eq.
(8) (right), ensuring that gas mobility returns to its original
state when foam effects vanish. Indeed, if ∆Pfoam = ∆Pref in
Eq. (17), then MRF = 1.

Note that Eq. (17) can also be written as:

MRF =
∆Pfoam − fl ∆Pref

fg ∆Pref
(18)

which clearly and correctly defines MRF. The numerator
subtracts the liquid contribution of the reference pressure drop,
fl ∆Pref, from the total foam pressure drop, isolating the portion
attributable to the gas phase under foam. The denominator,
fg ∆Pref, is the gas contribution of the reference pressure drop.

Thus, MRF quantifies the foam-induced amplification of gas-
phase resistance relative to its baseline, without requiring
relative-permeability curves.

Observe that, if fl ∆Pref were replaced by fl ∆Pfoam, Eq.
(18) would reduce to the simple ratio ∆Pfoam/∆Pref, thereby
losing the gas-specific normalization. In that case, the MRF
definition would implicitly incorporate changes related to the
liquid phase, while the objective of MRF is to isolate the effect
of foam on the gas phase only. Therefore, the subtraction must
involve the liquid contribution of the reference case, ensuring
that MRF remains a gas-specific measure of foam strength.

Fig. 1 illustrates the alignment between the proposed MRF
expression (dots) and the one computed with the CMG-STARS
equation (solid line), in comparison to the classical MRF
definition (crosses), ∆Pfoam/∆Pref, using noisy datasets for
foam and no-foam experiments. A quantitative analysis was
also performed to complement the visual inspection. Since the
MRF values span several orders of magnitude, the evaluation
employed the Mean Absolute Percentage Error (MAPE) as a
scale-invariant metric. The classical MRF definition exhibited
substantial deviations (average MAPE ≈ 1.75), whereas the
proposed formulation demonstrated high accuracy across all
scenarios (average MAPE ≈ 0.007).

It is observed that for low fg values, the classic definition
drastically underestimates the correct value of MRF, since
fl is high. Because it normalizes by the total (liquid+gas)
reference drop rather than the gas contribution, the large liquid
contribution in the denominator reduces the foam-induced gas
resistance. Indeed, since:

∆Pfoam

∆Pref
=

λl +λg

λl +
λg

MRF

=
1

1− fg +
fg

MRF

(19)

in the liquid-dominated limit fg → 0, this ratio tends to unity
regardless of the actual value of MRF. Therefore, ∆Pfoam/∆Pref
systematically underestimates the correct MRF when fg is
small. On the other hand, the novel estimation of MRF
follows the true values. This comparison demonstrates that
the proposed expression aligns more closely with the model
formulation, supporting its use for direct parameter estimation
based on only pressure drop measurements.

3. Dataset and parameter estimation approach
Synthetic datasets were generated using the implicit-texture

foam model (Eq. (8)) with known parameter values to focus
on the mathematical aspects of parameter estimation and
uncertainty quantification approaches. This strategy eliminates
experimental uncertainties and model-data mismatch, allowing
comparisons to a reference value to understand the fundamen-
tal properties of different estimation methods, and has been
used extensively in the literature (Berg et al., 2024; de Miranda
et al., 2024; Ribeiro et al., 2024).

To generate the dataset, our models and parameters are
based on the work of Jones et al. (2016). The foam parameters
were derived from their data using steady-state multiphase
flow equations with foam effects (Eqs. (1)-(7)). However, to
assess robustness against model mismatch, the LET functions
are used. To this end, the relative permeabilities reported by
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Fig. 1. Comparison of the MRF expression in the CMG-STARS model (solid line) in front of the datasets considering the
two formulas, Eq. (12) (cross) and Eq. (17) (dot), over noisy observations for different surfactant concentrations. As the
concentration increases, the impact of noise on saturation and pressure drop becomes less significant, improving the precision
of the calculations.
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Fig. 2. Comparison of LET (solid lines) and Brooks-Corey
(dashed lines) relative permeability functions used in this
work.

Jones et al. (2016) are approximated, which are Brooks-Corey
based, using the LET relative permeabilities. Fig. 2 shows
the LET relative permeability functions used in this work
(solid lines), which were based on data from the Brooks-
Corey representation of Jones et al. (2016). The parameters
of the LET functions are reported in Table 1, along the
original Corey exponents (nw = 2.86, ng = 0.7) from Jones
et al. (2016). It is important to note that the LET function can
reproduce the shape of the Brooks-Corey function, whereas
the converse is not necessarily true. This flexibility gives the
LET formulation a broader applicability and makes it better
suited for representing diverse relative permeability behaviors
(Valdez et al., 2020; Berg et al., 2021).

With the set of parameters reported in Table 1, the dataset
presented in Fig. 3 spanned surfactant concentrations of 0,
0.003, 0.01, 0.03, 0.05, 0.1, 0.5, and 1.0 wt%. The zero-
concentration case provides the reference conditions required
for MRF calculation using Eq. (17), conducted at high gas
fractions to achieve high gas saturations, similar to those
observed in the presence of foam. Simulations include foam
qualities from 0.1 to 0.99, generating pressure drop and
saturation data where true parameter values are known exactly.
A 10% Gaussian noise is added to the apparent viscosity and
saturation values to simulate uncertainty inherent in experi-
mental measurements (Berg et al., 2024). The original dataset

Table 1. Parameter values used for synthetic generation
based on Jones et al. (2016).

Type Parameter value

Foam

f mmob (-) 84,916

f mdry (-) 0.334

epdry (-) 66.7

f msur f (-) 0.558

epsur f (-) 0.865

Relative permeability

k0
rw (-) 0.39

Swc (-) 0.25

Lw (-) 3.0

Ew (-) 2.0

Tw (-) 1.0

k0
rg (-) 0.59

Sgr (-) 0.2

Lg (-) 0.75

Eg (-) 1.0

Tg (-) 1.5

Fluid/rock properties

uw (Pa·s) 1.0×10−3

ug (Pa·s) 1.805×10−5

ut (m/s) 2.4×10−5

σ (N/m) 0.0291

φ (-) 0.23

from Jones et al. (2016) and the synthetic dataset are presented
in the left and right panels of Fig. 3.

The steady-state foam corefloods from Jones et al. (2016)
were conducted on Bentheimer sandstone cores at 60 ◦C and
20 bar back-pressure. Nitrogen and an AOS surfactant solution
were co-injected at a constant superficial velocity of 2.4×10−5

m/s to generate foam, while pressure drop was measured. The
differences between the original dataset and model-generated
data arise from model limitations that do not fully capture the
experimentally observed behavior.
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Fig. 3. Apparent viscosity vs foam quality for different surfactant concentrations. Left: The original data from Jones et al.
(2016) data. Right: The synthetic data at the same surfactant concentrations, plus a no surfactant experiment, that is, without
foam, used as a reference for MRF calculation.

Fig. 4. Workflow comparison for foam parameter estimation. The MRF approach uses reference experiments at matching
saturations to directly calculate MRF. The Apparent Viscosity approach requires a separate relative permeability characterization
to model apparent viscosity. Both methods optimize for the same foam model parameters using different objective functions.

Therefore, from this point onward, the dataset generated
with the parameters estimated by Jones et al. (2016) is used.
Based on these data, two distinct datasets were constructed.
The first dataset provides direct measurements of apparent
viscosity (µapp) in relation to foam quality ( fg). The second
dataset contains calculated MRF values derived from pressure
drop measurements based on the proposed Eq. (17); the data
are presented for three selected surfactant concentrations in
Fig. 1.

4. Methods
The two parameter estimation approaches evaluated in this

work are illustrated in Fig. 4, which highlights the fundamental
differences in their workflows and data requirements. The
apparent viscosity approach (highlighted in blue) requires
previous knowledge of the relative permeability functions and
the pressure drop with foam. In contrast, the proposed MRF
approach of this work (highlighted in green) relies solely on
pressure experimental data with and without foam, and no
information about the relative permeabilities is required.

4.1 Foam parameter estimation
In this section, the objective functions employed for foam

parameter estimation are described. Two alternatives are con-

sidered: One based on apparent viscosity (Eq. (8)) and another
based on the MRF proposed in this work (see Eq. (17)). Both
functions represent the normalized sum of squared deviations
between model predictions and experimental observations.

The accuracy of the methods for estimating foam param-
eters using apparent viscosity observations also depends on
the adequacy of the assumed relative permeability model and
its estimated parameters. A structural mismatch between the
assumed krα functions and the true flow behavior or parametric
uncertainties propagates into foam parameter estimates (Ma
et al., 2013; Eftekhari and Farajzadeh, 2017; Valdez et al.,
2022b; Vicard et al., 2022).

In the following, the apparent viscosity-based and MRF-
based parameter estimation approaches are formulated as
optimization problems.

Apparent viscosity approach: Given the observed apparent
viscosity µobs

app, and the relative permeability parameters κ to
evaluate apparent viscosity model µmodel

app using Eq. (8), find
foam parameters θ that minimizes

χ
2
µapp(θ ; κ) = ∑

i

[
µmodel

app,i (θ ; κ)−µobs
app,i

max(µobs
app)

]2

(20)

It is important to note that procedures lacking saturation
monitoring necessitate the estimation of Sw from ( fg,µapp), as
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Table 2. Parameter bounds used in differential evolution
optimization.

Parameter Lower bound Upper bound

fmmob 103 107

fmdry Swc 1.0−Sgr

epdry 101 105

fmsurf 10−2 2.0

epsurf 10−2 5×101

detailed in Eq. (14). This issue may become more significant
for complex models that do not permit analytical inversion, as
Corey-Brooks (Eq. (14)).

MRF approach: Given the observed MRF MRFobs (Eq.
(17)), find foam parameters θ that minimizes:

χ
2
MRF(θ) = ∑

i

[
MRFmodel

i (θ)−MRFobs
i

max(MRFobs)

]2

(21)

A key advantage of the MRF approach is that it estimates
foam parameters without requiring prior knowledge of relative
permeability functions.

Both optimization problems were carried out using the dif-
ferential evolution (DE) method, a population-based stochastic
search algorithm (Storn and Price, 1997; Price, 2013), and
relied on the following settings across all scenarios: A pop-
ulation size of 500 individuals for the DE method evolved
over 500 generations within the parameter space limited by
physical constraints presented in Table 2.

4.2 Profile likelihood analysis
Parameter identifiability is a fundamental aspect to support

reliable model calibration. Profile likelihood (PL) analysis is a
technique for assessing practical and structural identifiability
by examining the objective-function topology in the vicinity
of optimal values (Raue et al., 2009), thereby highlighting
correlation structures and potential ambiguities in parameter
estimation.

The PL method involves fixing each parameter of interest
at specified values while optimizing the remaining parameters
to minimize the objective function. To this end, in this work,
each parameter was systematically varied within ±50% of its
reference value, generating 200 evaluation points per profile.
At each fixed parameter value, 20 independent optimization
runs of the DE method were performed with randomized initial
populations to ensure robust convergence and capture potential
local minima.

Three distinct scenarios were examined to evaluate the
influence of relative permeability characterization on foam
parameter identifiability:

1) The first scenario represents ideal conditions, where the
apparent viscosity objective function presented in Eq.
(20) is minimized using the ground-truth relative perme-
ability functions. This baseline establishes the intrinsic
identifiability limits of foam parameters under perfect
knowledge of multiphase flow properties.

2) The second scenario employs the apparent viscosity ob-
jective function again, Eq. (20). However, it adopts a
misspecified relative permeability function, particularly
assuming the Brooks-Corey functions instead of the LET
functions, illustrated in Fig. 2, the subtle yet critical
model discrepancy. It represents the common experimen-
tal conditions where relative permeability characterization
contains uncertainties in model specification and param-
eter fitting.

3) The third scenario evaluates the MRF formulation, pre-
sented in Eq. (21), which, by construction, eliminates di-
rect dependence on relative permeability functions during
optimization.

4.3 Relative permeability uncertainty
quantification

Following the establishment of parameter identifiability
through profile likelihood analysis, an uncertainty quantifi-
cation analysis was carried out to assess the robustness of
each foam parameter estimation approach. This evaluation
analyzes how uncertainties in relative permeability characteri-
zation propagate through the parameter estimation process and
influence the reliability of the estimated foam parameters.

To evaluate uncertainties, data was generated by sam-
pling the Corey-Brooks relative permeability parameters, κ =
{nw,ng,k0

rw,k
0
rg}, using Latin Hypercube Sampling (Iman and

Conover, 1982). The parameters were sampled from Gaussian
distributions centered at their ground truth values (nw = 2.86,
ng = 0.7, k0

rw = 0.39, and k0
rg = 0.59) with a ±10% variation,

generating 213 parameter sets that span the uncertainty space.
For each sampled relative permeability parameter set, two

estimation pathways were evaluated to enable direct compar-
ison between the strategies presented in Fig. 4. The apparent
viscosity approach employs the perturbed relative permeability
functions in µapp calculations during foam parameter optimiza-
tion, representing the conventional methodology where relative
permeability characterization uncertainties directly affect the
estimation process (for further details see Eftekhari and Fara-
jzadeh (2017)).

The MRF approach utilizes the same perturbed relative
permeability functions to generate reference pressure drop
values ∆Pref, which, combined with foam experiment pressure
drops ∆Pfoam, are used to calculate MRF values according to
Eq. (17). Foam parameters are subsequently estimated using
just the MRF dataset without relying on relative permeability
knowledge functions during optimization. While in the ap-
parent viscosity approach, monitoring water saturation is just
an optional step, it assumes a relative permeability function,
which introduces epistemic uncertainty. In contrast, the MRF
approach does require monitoring saturations but does not
make any assumption about the relative permeability.

5. Results
First, the alignment of the proposed MRF expression for

characterizing foam experimental data to the STARS foam
model is presented. Then, the results of the methods discussed
in the preceding section are presented, which were used to
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Fig. 5. Profile likelihood analysis for foam parameter estimation under three scenarios: µLET
app : Apparent viscosity objective

function assuming the correct relative permeability functions that generated the data (LET); µ
Corey
app : Apparent viscosity

objective function assuming assuming wrong relative permeability functions (Corey); MRF: MRF objective function, no relative
permeability assumptions. Vertical lines indicate ground truth parameter values.

Table 3. Parameter estimation comparison between µapp and MRF methods considering LET relative permeability for data
generation.

Parameter Ground truth
Estimate (absolute relative error)

µapp w/Corey µapp w/LET MRF

fmmob (105) 0.849 0.830 (2.24%) 0.854 (0.58%) 0.845 (0.49%)

fmdry (10−1) 3.344 3.148 (5.88%) 3.354 (0.30%) 3.345 (0.02%)

epdry (101) 6.666 7.846 (17.70%) 6.435 (3.46%) 6.606 (0.90%)

fmsurf (10−1) 5.580 5.532 (0.87%) 5.524 (1.00%) 5.540 (0.72%)

epsurf (10−1) 8.649 8.648 (0.01%) 8.673 (0.28%) 8.659 (0.12%)

evaluate parameter identifiability and quantify the uncertainty
associated with variability in the relative permeability function.

5.1 MRF
The STARS model evaluation is presented in Fig. 1,

showing the ground-truth parameters (solid line) compared to
the MRF calculated using Eq. (12) (cross) or Eq. (17) (dot)
at three selected surfactant concentrations. First, it is evident
that the proposed expression for MRF quantification aligns
more closely with the data obtained using the STARS foam
mathematical model. Moreover, as the surfactant concentration
increases and the foam strengthens, the proposed MRF appears
to be less sensitive to noise.

5.2 Parameter identifiability
The profile likelihood results are presented in Fig. 5 for

three scenarios: apparent viscosity objective function with
known relative permeability functions (µLET

app , using the ground
truth parameters), apparent viscosity objective function with a
mismatch in relative permeability functions (µCorey

app ), and MRF
objective function (MRF). Each column represents a different
profiled parameter. Table 3 presents a quantitative assessment
of this analysis, showing the absolute relative errors of the
different approaches computed with respect to the ground-truth
parameters.

In the first scenario (Fig. 5, solid black line), the profile
likelihood exhibits well-defined minima within the confidence
threshold of 50% for all foam parameters when using the
apparent viscosity approach with correct relative permeability
functions (without uncertainty in relative permeability). This
confidence threshold defines the range of acceptable parameter
estimates that maintain at least half of the maximum like-
lihood. The formulation that incorporates the MRF into the
objective function (Fig. 5, solid red line) also demonstrates
close agreement with the ground truth parameters.

The case where noise is introduced in the relative per-
meability functions to represent difficulties in their estimation
significantly impacts the identifiability profiles, as shown in the
blue lines in Fig. 5. Notable deviations from the ground truth
values occur for fmdry and epdry, with the objective func-
tion minima shifting substantially from their true positions.
Although the mismatch in fmdry seems small, it is important
to recognize that even minor deviations in this parameter can
have a substantial effect on model predictions (Valdez et al.,
2022a).

The results of the foam parameter estimation are summa-
rized in Table 3 for each approach. The apparent viscosity
method produced significant errors, as it incorrectly attributed
the relative permeability model (mismatch) to foam effects. In
contrast, the MRF approach, being agnostic to the permeability
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Fig. 6. Propagated uncertainties from relative permeability parameters to the relative permeability functions (left) and to the
reference pressure drop (right).

Table 4. Comparison of estimated values from both approaches and their relative error against the ground truth values.

Parameter Ground truth
Maximum error (relative error)

µapp approach MRF approach

fmmob (105) 0.849 0.516 (-39.28%) 0.506 (-40.47%)

fmdry (10−1) 3.344 3.977 (18.91%) 3.328 (-0.48%)

epdry (101) 6.666 13.810 (107.11%) 6.385 (-4.21%)

fmsurf (10−1) 5.580 4.585 (-17.84%) 5.925 (6.18%)

epsurf (10−1) 8.649 9.152 (5.82%) 8.837 (2.18%)

model, closely approximated the true foam parameters.

5.3 Uncertainty propagation from relative
permeability functions

The uncertainties in the relative permeability parameters
κ are propagated to the model outputs, namely the apparent
viscosity and the MRF. To evaluate the impact on the esti-
mated parameters, multiple runs of the parameter estimation
process were conducted.

First, Fig. 6 (left panel) shows the uncertainties from
relative permeability parameters to the relative permeability
functions. The right panel of Fig. 6 shows the result of
propagating the relative permeability uncertainties to the no-
foam reference pressure drop, which is required for the MRF
approach.

Next, a set of 213 parameter estimation runs were carried
out to provide a statistically robust characterization of bias and
variance in estimated foam parameters under uncertainty in
relative permeability in order to compare the approaches using
µapp or MRF. Table 4 presents a comparison of the maximum
error committed when using the two different approaches. The
maximum relative errors demonstrate that the MRF approach
consistently yields better approximations for the dry-out pa-
rameters (fmdry and epdry). On the other hand, both methods
show similar performance for the other parameter estimation.
The improved performance of the MRF method observed in
Table 4 stems from its theoretical consistency with the gas-
only mobility reduction hypothesis. While the µapp approach

relies on inversion of relative permeability models to estimate
water saturation, the MRF method requires explicit saturation
monitoring. This direct measurement of water saturation is
especially advantageous for estimating dry-out parameters
(fmdry, epdry), which are strongly connected to water satu-
ration behavior. By eliminating the need for relative perme-
ability inversions and directly measuring the saturation that
controls foam dry-out, the MRF approach drastically reduces
uncertainty in these critical parameters.

A more detailed analysis of the estimated parameters is
presented in Fig. 7 that compares the fitting results of the
two approaches in a joint plot of the estimated values θ for
sampled relative permeability parameters κ . For all parameters
except fmmob, the µapp approach produces a wider spread of
estimated parameter values than the MRF approach, indicating
a greater propagation of uncertainties in these parameters.
With respect to Fig. 7, one can also note that the MRF
approach for foam parameter estimation reduces the range
of estimated parameters, and consequently, the associated
uncertainties, particularly for the epdry and fmdry parameters.
This improvement stems from the MRF approach explicitly
incorporating information about water saturation.

6. Discussions

6.1 Relative permeability models
The proposed MRF approach, while requiring saturation

monitoring, which can be obtained through CT (Simjoo et al.,
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Fig. 7. Comparison of foam parameter estimates from apparent viscosity (gray) and MRF (blue) approaches across 8192
relative permeability realizations.

2013), NMR (Amirmoshiri et al., 2018), or mass balance
calculations (Ma et al., 2013), provides parameters less af-
fected by epistemic uncertainties from relative permeabil-
ity assumptions. Recent studies on uncertainty quantification
of relative permeability models (Valdez et al., 2020; Berg
et al., 2021, 2024; Ribeiro et al., 2024) have shown that
these uncertainties can substantially affect production factors.
Therefore, in scenarios where relative permeabilities are highly
uncertain, the direct measurement of water saturation in the
MRF approach also provides an advantage for estimating dry-
out parameters, which are highly sensitive to water saturation,
reducing uncertainty propagation.

The MRF approach becomes particularly relevant when
considering more complex relative permeability models, such
as LET (Lomeland et al., 2005), which include additional
parameters for endpoint curvature and transition behavior.
Assumptions regarding the estimated values for the relative
permeability parameters enable the foam parameter estimation
to adjust to the studied dataset and indicate a best estimation

set, although it does not accurately represent the actual mobil-
ity reduction provided by foam (see Fig. 5 and Tables 3 and
4).

The MRF approach circumvents this mathematical limita-
tion by relying solely on the observed pressure drop and satu-
ration for core flooding experiments (with and without foam).
This flexibility sets the estimation of relative permeability as
a subsequent step or even a possibility to estimate together
with the foam parameters. It avoids bias from functional
form assumptions and enables hypothesis testing during the
parameter estimation procedure, such as the variation in the
residual saturations due to the presence of foam (Mehrabi
et al., 2022).

6.2 MRF definition
Beyond the parameter fitting capability, the lack of stan-

dardized definitions for experimental MRF (Rosman and Kam,
2009; Simjoo et al., 2013; Sri-Hanamertani et al., 2021), see
also the works by AlYousef et al. (2023); Bello et al. (2023);
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Fig. 8. MRF approach validation on data from Kapetas et al. (2016) with active Fshear effects showing good agreement between
calculated and theoretical values.

Jia et al. (2024), creates challenges for data interpretation
and cross-study comparisons. This inconsistency in experi-
mental protocols produces MRF values that, while sharing
nomenclature with the implicit-texture model parameter, rep-
resent fundamentally different physical quantities (see Fig. 1).
Different experimental MRF definitions (involving reference
conditions such as continuous brine injection, continuous gas
injection, or water-gas co-injection) yield values that cannot
be directly compared or converted into implicit-texture foam
parameters without additional data. Without standardization,
the same foam system characterized in different laboratories
produces MRF values that represent distinct physical quantities
despite identical nomenclature.

Although this study focuses exclusively on the effects
of surfactant concentration and water saturation, the MRF
approach is capable of capturing other foam behaviors, such as
shear-thinning effects. However, fitting parameters associated
with these additional behaviors would require further data,
which have been simplified in the present analysis to consider
only dry-out and surfactant effects. For instance, fitting the
Fshear function from single injection velocity experiments faces
identifiability challenges (de Moura Ribeiro et al., 2025).

To further demonstrate the applicability of the proposed
MRF expression, an additional analysis using the experimental
data provided by Kapetas et al. (2016) was presented. Fig. 8
illustrates the MRF values using the proposed expression for
the experimental data of the foam-quality scan presented by
Kapetas et al. (2016), along with the fitted parameters from
Valdez et al. (2022a) used to simulate both the reference pres-
sure drop and the corresponding ground-truth function. This
demonstrates that Eq. (17) remains applicable to other foam
physics, such as the non-Newtonian behavior, and may also
extend to additional contexts, as long as saturation matching
between the reference and foam experiments is preserved.

6.3 Injected surfactant concentrations
Including Fsur f in the model while using data from a

single surfactant concentration may result in identifiability
issues. The optimization cannot distinguish between the refer-
ence foam strength (fmmob) and the concentration-dependent

scaling, leading to parameter correlation and non-unique pa-
rameters. This coupling manifests as flattened profile likeli-
hood curves or oscillations for both fmmob and surfactant
parameters. To illustrate this behavior, the profile likelihood
analysis was conducted using data from increasing surfactant
concentrations (Fig. 9). The results suggest that the non-
identifiability cases observed in Fig. 9 (corresponding to the
first three cases) arise because the experimental procedure
lacks the necessary variation in surfactant concentrations to
properly constrain the Fsur f terms. This issue is due to the
absence of data, rather than the estimation method used,
whether the proposed MRF approach or the traditional µapp
approach. Particularly, in the case examined, at least three
surfactant concentrations are needed to prevent identifiability
issues, as shown in the bottom panel.

6.4 Translation to field scale
Although upscaling introduces additional complexities,

such as heterogeneity and gravitational effects, robust
laboratory-scale characterization is the fundamental basis for
reliable field models. Field implementation typically employs
history matching to refine laboratory-derived parameters using
early production data (Alcorn et al., 2022; Sæle et al., 2022).
As shown in Table 3, the proposed MRF approach yields lower
estimation errors for critical foam parameters, particularly
fmmob, fmdry, and epdry, compared to the conventional µapp
approach. These parameters control the foam strength and
the dry-out behavior, which are essential for predicting foam
propagation and stability in reservoirs. Reduced uncertainties
in these parameters lead to more accurate field-scale predic-
tions of foam performance, including sweep efficiency and
oil recovery. In contrast, the µapp approach introduces larger
errors that propagate to field models, potentially resulting in
suboptimal foam application designs and economic outcomes.
Consequently, uncertainties originating from core-flooding pa-
rameter estimation are inevitably transferred to field-scale
simulations (Sharma et al., 2020; de Moura Ribeiro et al.,
2025).

Biased parameter estimations from uncertain lab estimates
either propagate to field predictions or are compensated
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Fig. 9. Profile likelihood analysis showing parameter identifiability improvement with increasing surfactant concentration data
points.

through adjustments to reservoir properties during history
matching. This misattribution obscures uncertainty sources
and reduces physical consistency in forecasts. While this
work does not address upscaling or field-scale translation, it
strengthens the core-scale characterization essential for field-
level modeling.

6.5 Applicability and limitations
The proposed MRF method requires saturation monitoring

and a no-foam reference experiment at matching saturations,
which may not be feasible in all laboratory settings. In sum-

mary, the choice between methods for foam parameter estima-
tion should consider: (1) When relative permeability is well-
characterized (low uncertainty), both methods are applicable,
though MRF typically provides lower uncertainty due to its
circumvention of relative permeability assumptions; (2) when
relative permeability is highly uncertain, MRF is preferred; (3)
when saturation monitoring is unavailable, the traditional µapp
method may be the only option. In addition, one can note that
if relative permeability models, such as the LET model, are to
be employed, the MRF method remains the preferred choice,
since inverting the LET model is not straightforward. The
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decision should balance experimental capabilities, required
accuracy, and the intended application, as foam parameter
estimation is critical for accurate field-scale predictions, where
the reliability of parameters significantly impacts forecasts.

7. Conclusions
This study presented an alternative approach for foam

parameter estimation in implicit-texture models, which is
based on the definition of an alternative MRF expression. The
proposed approach introduces the foam quality fg value into
the MRF formula to circumvent the need for relative perme-
ability functions assumption during the estimation of foam
parameters. The derived expression provides a standardized
metric for comparing foam strength across experiments and
laboratories, and serves as an alternative method for parameter
estimation.

The LET relative permeability functions were employed
with the foam implicit-texture model implemented in CMG-
STARS to generate the data and validate the approach capacity
to circumvent model assumptions. The analysis of parameter
identifiability showed that both the surfactant-related parame-
ters and the dry-out parameters can be reliably estimated using
the proposed formulation. Both approaches studied require
conducting foam quality scan experiments at a sufficient range
of injected concentrations to prevent issues with parameter
identifiability.

The MRF formulation provides direct physical inter-
pretability and facilitates meaningful comparisons between
foam characterization studies conducted under different ex-
perimental conditions. Moreover, uncertainty quantification re-
vealed that the MRF approach enabled more robust parameter
estimation by consistently producing lower parameter estima-
tion variances compared to the apparent viscosity approach,
particularly for the dry-out parameters fmdry and epdry. This
reduction in uncertainty propagation represents a significant
advantage for experimental characterization of foam behavior.
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