Improving basalt wettability to de-risk CO2 geo-storage in basaltic formations

Authors

  • Stefan Iglauer* School of Engineering, Edith Cowan University, 270 Joondalup Drive, 6027 Joondalup, Australia (Email:s.iglauer@ecu.edu.au)
  • Ahmed Al-Yaseri* School of Engineering, Edith Cowan University, 270 Joondalup Drive, 6027 Joondalup, Australia;Petroleum Engineering Department, School of Engineering, Australia College of Kuwait, Kuwait (Email:alyaseri78@gmail.com)

Keywords:

CO2 geo-sequestration, basalt, storage capacity, wettability, surfactant

Abstract

CO2 geo-storage in basaltic formations has recently been identified as a viable option to rapidly dispose large quantities of CO2 , hence mitigating anthropogenic CO2 emissions. However, it has been shown that basalt is weakly water-wet or intermediate-wet at typical storage conditions, which reduces capillary trapping capacities and increases lateral and vertical spreading of the CO2 plume; and these effects increase project risk. We thus propose here to prime basalt surfaces with anionic surfactant (here we used sodium dodecyl benzene sulfonate), and demonstrate that such priming is highly efficient, and renders the basalt completely water-wet even at high pressures and minute sodium dodecyl benzene sulfonate concentrations. Such a wettability alteration can therefore significantly de-risk storage projects. This work aids in the improvement of CO2 storage in basaltic formations and supports implementation of industrial-scale CO2 geo-sequestration and climate change mitigation.

Cited as: Iglauer, S., Al-Yaseri, A. Improving basalt wettability to de-risk CO2 geo-storage in basaltic formations. Advances in Geo-Energy Research, 2021, 5(3): 347-350, doi: 10.46690/ager.2021.03.09

References

Abramov, A., Keshavarz, A., Iglauer, S. Wettability of fully hydroxylated and alkylated (001) α -quartz surface in carbon dioxide atmosphere. The Journal of Physical Chemistry C, 2019, 123(14): 9027-9040.

Alfredsson, H. A., Oelkers, E. H., Hardarsson, B. S., et al. The geology and water chemistry of the Hellisheide, SW-Iceland carbon storage site. International Journal of Greenhouse Gas Control, 2013, 12: 399-418.

Al-Khdheeawi, E., Vialle, S., Barifcani, A., et al. Impact of reservoir wettability and heterogeneity on CO2 -plume migration and trapping capacity. International Journal of Greenhouse Gas Control, 2017, 58: 142-158.

Al-Khdheeawi, E., Vialle, S., Barifcani, A., et al. Effect of wettability heterogeneity and reservoir temperature on CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 2018, 68: 216-229.

Al-Menhali, A. S., Krevor, S. C. Capillary trapping of CO2 in oil reservoirs: Observations in a mixed-wet carbonate rock. Environmental Science & Technology, 2016, 50: 2727-2734.

Al-Menhali, A. S., Menke, H. P., Blunt, M. J., et al. Pore scale observations of trapped CO2 in mixed-wet carbonate rock: Applications to storage in oil fields. Environmental Science & Technology, 2016, 50(18): 10282-10290.

Alnili, F., Al-Yaseri, A. Z., Roshan, H., et al. Carbon dioxide/brine wettability of porous sandstone versus quartz: An experimental and theoretical investigation. Journal of Colloid and Interface Science, 2018, 524: 188-194.

Al-Yaseri, A. Z., Lebedev, M., Barifcani, A., et al. Receding and advancing (CO2+brine+quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity. Journal of Chemical Thermodynamics, 2016a, 93: 416-423.

Al-Yaseri, A. Z., Roshan, H., Lebedev, M., et al. Dependence of quartz wettability on fluid density. Geophysical Research Letters, 2016b, 43(8): 3771-3776.

Aradottir, E. S. P., Sonnenthal, E. L., Bjornsson, G., et al. Multidimensional reactive transport modelling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. International Journal of Greenhouse Gas Control, 2012, 12: 399-418.

Arif, M., Abu-Khamsin, S., Iglauer, S. Wettability of rock/CO2 /brine and rock/oil/CO2 -enriched-brine systems: Critical parametric analysis and future outlook. Advances in Colloid and Interface Science, 2019, 268: 91-113.

Arif, M., Lebedev, M., Barifcani, A., et al. Investigation of CO2 wettability of calcite for CO2 storage in carbonates. International Journal of Greenhouse Gas Control, 2017, 62: 113-121.

Awan, F. U. R., Keshavarz, A., Akhondzadeh, H., et al. Stable dispersion of coal fines during hydraulic fracturing flowback in coal seam gas reservoirs-an experimental study. Energy & Fuels, 2020, 34: 5566-5577.

Broseta, D., Tonnet, N., Shah, V. Are rocks still water-wet in the presence of dense CO2 or H2S? Geofluids, 2012, 12: 280-294.

Chen, C., Zhang, N., Li, W., et al. Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions. Environmental Science & Technology, 2015, 49(24): 14680-14687.

Chiquet, P., Broseta, D., Thibeau, S. Wettability alteration of caprock minerals by carbon dioxide. Geofluids, 2017, 7: 112-122.

Ernst, R. E. Large Igneous Provinces. Cambridge, UK, Cambridge University Press, 2014.

Fauziah, C. A., Al-Khdheeawi, E., Feng, R., et al. Dependence of clay wettability on gas density. Greenhouse Gases: Science and Technology, 2021 (in press).

Gislason, S. R., Wolff-Boenisch, D., Stefansson, A., et al. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control, 2010, 4(3): 537-545.

Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., et al. An experimental study of crystalline basalt dissolution from 2 ≤ pH ≤ 11 and temperatures from 5 to 75 ◦C. Geochimica et Cosmochimica Acta, 2011, 75: 5496-5509.

Iglauer, S. CO2 -water-rock wettability: Variability, influencing factors and implications for CO2 geo-storage. Accounts of Chemical Research, 2017, 50: 1134-1142.

Iglauer, S., Al-Yaseri, A., Wolf-Boenisch, D. Basalt-CO2 -brine wettability at storage conditions in basaltic formations. International Journal of Greenhouse Gas Control, 2020, 102: 103148.

Iglauer, S., Hassan, A., Sarmadivaleh, M., et al. Contamination of silica surfaces: Impact on water-CO2 -quartz and glass contact angle measurements. International Journal of Greenhouse Gas Control, 2014, 22: 325-328.

Iglauer, S., Mathew, M., Bresme, F. Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2 -quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geosequestration. Journal of Colloid and Interface Science, 2012, 386: 405-414.

Iglauer, S., Pentland, C. H., Busch, A. CO2 wettability of storage and seal rock and implications for carbon geo-storage. Water Resources Research, 2015, 51(1): 729-774.

Lander, L. M., Siewierski, L. M., Brittain, W. J., et al. A systematic comparison of contact angle methods. Langmuir, 1993, 9: 2237-2239.

le Roex, A. P. Mid-ocean ridge basalt (MORB), in Geochemistry, edited by C. P. Marshall and R. W. Fairbridge, Springer, Dordrecht, 1998.

Love, J. C., Estroff, L. A., Kriebel, J. K., et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005, 105: 1103-1169.

Matter, J. M., Stute, M., Snæbjörnsdottir, S., et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 2016, 352(6291): 1312-1314.

McGrail, B. P., Schaef, H. T., Spane, F. A., et al. Field validation of supercritical CO2 reactivity wit basalts. Environmental Science & Technology Letters, 2016, 4: 6-10.

Oelkers, E. H., Gislason, S. R., Matter, J. Mineral carbonation of CO2 . Elements, 2008, 4: 333-337.

Pan, B., Li, Y., Xie, L., et al. Role of fluid density on quartz wettability. Journal of Petroleum Science and Engineering, 2019, 172: 511-516.

Rahman, T., Lebedev, M., Barifcani, A., et al. Residual trapping of supercritical CO2 in oil-wet sandstone. Journal of Colloid and Interface Science, 2016, 469: 63-68.

Schaef, H. T., McGrail, B. P., Owen, A. T., et al. Mineralization of basalts in the CO2 -H2O-H2S system. International Journal of Greenhouse Gas Control, 2013, 16: 187-196.

Snæbjörnsdottir, S., Gislason, S. R., Galeczka, I. M., et al. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochimica et Cosmochimica Acta, 2018, 220: 348-366.

Snæbjörnsdottir, S., Oelkers, E. H., Mesfin, K., et al. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. International Journal of Greenhouse Gas Control, 2017, 58: 87-102.

Span, R., Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.

Stevar, M. S. P., Böhm, C., Notarki, K. T., et al. Wettability of calcite under carbon storage conditions. International Journal of Greenhouse Gas Control, 2019, 84: 180-189.

Wolff-Boenisch, D., Wenau, S., Gislason, S. R., et al. Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2 : Implications for mineral sequestration of carbon dioxide. Geochimica et Cosmochimica Acta, 2011, 75: 5510-5525.

Downloads

Download data is not yet available.

Downloads

Published

2021-07-06

Issue

Section

Articles