Characteristics of Precambrian basement intruded by Cretaceous geological intrusions in Monteregian Igneous Province and their impacts on regional thermal structure
Keywords:
Monteregian intrusions, thermal structure, thermal physical properties, fault systemAbstract
With the progress of geothermal exploration in deep buried geological bodies, high radiogenic geological intrusions have become the hot spot in recent years. However, the assessment of the complex structure, lithology of geological intrusions by the geophysical methods has uncertainty, making it a challenging to accurately predict the thermal structure around the geological intrusions. In southern Québec, Canada, recent studies show that a relative high surface heat flux has been detected in the region enclosed by Montréal, Salaberry-de-Valleyfield and Saint-Jean-sur-Richelieu, around the southwest of the Monteregian Hills, which belong to the Early Cretaceous alkaline and carbonatite intrusions. It is not clear whether these Monteregian intrusions have impacts on the thermal anomaly of the Montréal, Salaberry-de-Valleyfield and Saint-Jean-sur-Richelieu region. The objective of this paper is to numerically investigate the thermal structure in the thermal anomaly region, considering the impact of different Monteregian intrusions. The simplified Monteregian intrusions are embedded into a three-dimensional geological model consisting of the sedimentary formations in the St. Lawrence Lowlands and the simulator Underworld2 is used for the thermal modelling. Simulation results show that the geological intrusions in this region have large impacts on the thermal structure at the local-scale, depending on the radiogenic heat production, thermal conductivity, emplacement depth and size. Temperature in the sedimentary formations may be lower or higher than that of the adjacent geological intrusions, highly depending on the thermal physical characteristics of these intrusions. Furthermore, the complex fault systems also strongly control the thermal distribution in different fault blocks, making the Potsdam Group sandstone located between the Grand-St-Esprit and Notre-Dame-du-Bon-Conseil faults as the potential geothermal reservoir.
Cited as: Liu, H., Ban, S., Bédard, K., Giroux, B. Characteristics of Precambrian basement intruded by Cretaceous geological intrusions in Monteregian Igneous Province and their impacts on regional thermal structure. Advances in Geo-Energy Research, 2022, 6(3): 206-220. https://doi.org/10.46690/ager.2022.03.04
ReferencesAgustsson, K. Geochemistry and geochronology of the Central Metasedimentary Belt boundary thrust zone thrust sheets in Southern Ontario, Grenville Province. Bachelor thesis, California, California Polytechnic State University, 2012.
Anyim, K., Gan, Q. Fault zone exploitation in geothermal reservoirs: Production optimization, permeability evolution and induced seismicity. Advances in Geo-Energy Research, 2020, 4(1): 1-12.
Artemieva, I. M. Continental crust, in UNESCO Encyclopedia of Life Support Systems, Oxford, UK, 2002.
Bédard, J. H. The opening of the Atlantic, the Mesozoic New England igneous province, and mechanisms of continental breakup. Tectonophysics, 1985, 113: 209-232.
Bédard, K., Comeau, F. A., Malo, M. Modélisation géologique 3D du basin des Basses-Terres du Saint-Laurent. Final Report INRSCO2-2013-V1.5, 2013a.
Bédard, K., Comeau, F. A., Raymond, J., et al. Geothermal characterization of the St. Lawrence Lowlands sedimentary basin, Qu ébec, Canada. Natural Resources Research, 2018, 27: 479-502.
Bédard, K., Malo, M., Comeau, F. A. CO2 geological storage in the Province of Québec, Canada-Capacity evaluation of the St. Lawrence Lowlands basin. Energy Procedia, 2013b, 37: 5093-5100.
Bleeker, W., Dix, G. R., Davidson, A., et al. Tectonic evolution and sedimentary record of the Ottawa-Bonnechere graben: Examining the Precambrian and Phanerozoic history of magmatic activity, faulting, and sedimentation. Paper Presented at Field Trip-Excursion 1A, GAC-MAC-SEG-SGA Joint Annual Meeting, Ottawa, 20-24 May, 2011.
Capuno, V. T., Maria, R. B. S., Minguez, E. B. Mak-Ban geothermal field, Philippines: 30 years of commercial operation. Paper Presented at World Geothermal Congress 2010, Bali, Indonesia, 25-29 April, 2010.
Chen, S. C., Ding, B., Gong, L., et al. Comparison of multi-field coupling numerical simulation in hot dry rock thermal exploitation of enhanced geothermal systems. Advances in Geo-Energy Research, 2019, 3(4): 396-409.
Clark, T. H. Région de Montréal: Ministère des Richesses naturelles de Québec. Rapport Géologique, RG-152, 1972.
Cook, F. A., White, D. J., Jones, A. G., et al. How the crust meets the mantle: Lithoprobe perspectives on the Mohorovicic discontinuity and crust-mantle transition. Canadian Journal of Earth Sciences, 2010, 47: 315-351.
Corriveau, L. Architecture de la ceinture métasédimentaire centrale au Québec, Province de Grenville: Un exemple de l’analyse de terrain de métamorphisme élevé. Commission géologique du Canada Bulletin, 2013, 586: 252.
Corriveau, L., Morin, D. Modelling 3D architecture of western Grenville from surface geology, xenoliths, style of magma emplacement, and lithoprobe reflectors. Canadian Journal of Earth Sciences, 2000, 37: 235-251.
Dietrich, J., Lavoie, D., Hanningan, P., et al. Geological setting and resource potential of conventional petroleum plays in Paleozoic basins in eastern Canada. Bulletin of Canadian Petroleum Geology, 2011, 59: 54-84.
Easton, R. S., Kamo, S. L. Harvey-Cardiff domain and its relationship to the Composite Arc Belt, Grenville Province: Insights from U–Pb geochronology and geochemistry. Canadian Journal of Earth Sciences, 2011, 48(2): 347-370.
Eby, G. N. The Monteregian Hills and White Mountain alkaline igneous provinces, eastern North America. Geological Society of London Publications, 1987, 30: 433-447.
Feininger, T., Goodacre, A. K. The eight classical Monteregian hills at depth and the mechanism of their intrusion. Canadian Journal of Earth Sciences, 1995, 32: 1350-1364.
Feininger, T., Goodacre, A. K. The distribution of igneous rocks beneath Mont Mégantic (the easternmost Montere-gian) as revealed by gravity. Canadian Journal of Earth Sciences, 2003, 40: 765-773.
Foland, K. A., Jiang, F. C., Gilbbert, L. A., et al. Nd and Sr isotopic signatures of Mesozoic plutons in northeastern North America. Geology, 1988, 16: 684-687.
Ford, K. L., Savard, M., Dessau, J-C., et al. The role of gamma-ray spectrometry in radon risk evaluation: A case history from Oka, Québec. Geoscience Canada, 2001, 28(2): 59-64.
Foster, J., Symons, D. T. A. Defining a paleomagnetic polarity pattern in the Monteregian intrusives. Canadian Journal of Earth Sciences, 1979, 16: 1716-1725.
Grasby, S. E., Allen, D. M., Bell, S., et al. Geothermal energy resource potential of Canada. Canada, Geological Survey of Canada, Open File 6914 (revised), 2012.
Guillou-Frottier, L., Mareschal, J. C., Jaupart, C., et al. Heat flow variations in the Grenville Province, Canada. Earth and Planetary Science Letters, 1995, 13: 447-460.
Jaupart, C., Mareschal, J. C. Heat Generation and Transport in the Earth. Cambridge, UK, Cambridge University Press, 2011.
Koestono, H., Siahaan, E. E., Silaban, M., et al. Geothermal model of the Lahendong geothermal field, Indonesia. Paper Presented at World Geothermal Congress 2010, Bali, Indonesia, 25-29 April, 2010.
Kumarapeli, P. S. Vestiges of Iapetan rifting in the craton of the Northern Appalachians. Geoscience Canada, 1985, 12: 54-59.
Lavoie, D., Pinet, N., Castonguay, S., et al. Hydrocarbon systems in the Paleozoic basins of eastern Canada. Paper Presented at the Calgary 2007 workshop, Geological Survey of Canada Open File 5980, Calgary, Canada, January, 2009.
Lemgruber-Traby, A., Bonte, D., Souque, C. Thermal assessment of Los Humeros geothermal system through basin modeling. Paper Presented at Proceedings World Geothermal Congress, Reykjavik, Iceland, April-October, 2021.
Liu, H. J., Giroux, B., Harris, L., et al. Numerical analysis of the role of radiogenic basement on temperature distribution in the St. Lawrence Lowlands, Québec. Geothermal Energy, 2018, 6: 1-26.
Liu, H. J., Hou, Z. M., Li, X. C., et al. A preliminary site selection system for a CO2 -AGES project and its application in China. Environmental Earth Sciences, 2015, 73: 6855-6870.
Majorowicz, J. A., Minea, V. Geothermal energy potential in the St-Lawrence River area, Québec. Geothermics, 2012, 43: 25-36.
Majorowicz, J. A., Minea, V. Geothermal anomalies in the Gaspésie Peninsula and Madeleine Islands, Québec. GRC Transactions, 2013, 37: 295-300.
Mareschal, J. C., Jaupart, C. Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth and Planetary Science Letters, 2004, 223: 65-77.
Matton, G., Jébrak, M. The Cretaceous Peri-Atlantic alkaline pulse (PAAP): Deep mantle plume origin or shallow lithospheric break-up. Tectonophysics, 2009, 469: 1-12.
McLelland, J. M., Selleck, B. W., Bickford, M. E. Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians, in From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region, edited by R. P. Tollo, M. J. Bartholomew, J. P. Hibbard, et al., Geological Society of America Memoir, pp. 1-29, 2010.
Meixner, A. J., Kirkby, A. L., Lescinsky, D. T., et al. The Cooper Basin 3D map Version 2: Thermal modelling and temperature uncertainty. Geoscience Australia Record, 2012, 60: 1-52.
Moecher, D. P., Anderson, E. D., Cook, C. A., et al. Petrogenesis of metamorphosed carbonatites, Grenville Province, Ontario. Canadian Journal of Earth Sciences, 1997, 34: 1185-1201.
Moresi, L., Quenette, S., Lemiale, V., et al. Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors, 2007, 163: 69-82.
Mungall, J. A. 1050 Ma pyroxenite-carbonatite suite near Pumbrock, Ontario. Geological Association of Canada-Mineralogical Association of Canada, Program with Abstracts, 1989, 14: A24.
Nasr, M., Raymond, J., Malo, M. Évaluation en laboratoire des caractéristiques thermiques du bassin sédimentaire des basses-terres du Saint Laurent. Paper Presented at of the 68th Canadian geotechnical conference and 7th Canadian permafrost conference, Québec, Canada, 20-23 September, 2015.
Owen, V. J., Greenough, J. D. Influence of Potsdam sandstone on the trace element signatures of some 19th -century American and Canadian glass: Redwood, Redford, Mallorytown, and Como–Hudson. Geoarchaeology, 2008, 23: 587-607.
Peck, W. H. Reconnaissance geochronology and geochemistry of the Mont-Tremblant gneiss of the Morin terrane, Grenville Province, Québec. Geosphere, 2012, 8(6): 1356-1365.
Perozzi, L., Raymond, J., Asselin. S., et al. Simulation géostatistique de la conductivité thermique: Application à une region de la communauté métropolitaine de Montréal. Research Report R1663, Institut National de la Recherche Scientifique-Centre Eau Terre Environnement, 2016.
Perry, C., Rosieanu, C., Mareschal, J. C., et al. Thermal regime of the lithosphere in the Canadian Shield. Canadian Journal of Earth Sciences, 2010, 47: 389-408.
Philpotts, A. R. Mechanism of emplacement of the Montere-gian intrusions. Canadian Mineralogy, 1970, 10: 395-410.
Pinti, D. L., Béland-Otis, C., Tremblay, A., et al. Fossil brines preserved in the St-Lawrence Lowlands, Québec, Canada as revealed by their chemistry and noble gas isotopes. Geochimica et Cosmochimica Acta, 2011, 75: 4228-4243.
Quenette, S., Xi, Y. F., Mansour, J., et al. Underworld-GT applied to Guangdong, a tool to explore the geothermal potential of the crust. Journal of Earth Science, 2015, 26(1): 78-88.
Rankin, D. W. Appalachian salients and recesses: Late Pre-cambrian continental break up and the opening of the Iapetus Ocean. Journal of Geophysics Research, 1976, 81: 5605-5619.
Rawling, T. J., Sandiford, M., Beardsmore, G. R., et al. Thermal insulation and geothermal targeting, with specific reference to coal-bearing basins. Australian Journal of Earth Sciences, 2013, 60(8): 817-830.
Rimando, R. E., Benn, K. Evolution of faulting and paleo-stress field within the Ottawa graben, Canada. Journal of Geodynamics, 2005, 39: 337-360.
Rivard, P., Ollivier, J. P., Ballivy, G. Characterization of the ASR rim: Application to the Potsdam sandstone. Cememt and Concrete Research, 2002, 32: 1259-1267.
Rivers, T. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province-implications for the evolution of large hot long-duration orogens. Precambrian Research, 2008, 16: 237-259.
Rocher, M., Tremblay, A. L’effondrement de la plate-forme du Saint-Laurent: Ouverture de Iapetus ou de l’Atlantique? Apport de la reconstitution des paléocontraintes dans la region de Québec (Canada). Earth and Planetary Sciences, 2001, 333: 171-178.
Roulleau, É. Isotopic tracing of origin and evolution of magmas in the Continental context: Relative contributions of mantle sources and continental crust. PhD thesis, Québec, Université du Québec à Montréal, 2010.
Roulleau, E., Stevenson, R., Polat, A. Geochemical and isotopic (Nd–Sr–Hf–Pb) evidence for a lithospheric mantle source in the formation of the alkaline Monteregian Province (Québec). Canadian Journal of Earth Sciences, 2013, 50(6): 650-666.
Seguin, M. K. Emplacement of the Monteregian hills of Québec, geophysical evidence. Tectonophysics, 1982, 86: 305-317.
Siler, D. L., Faulds, J. E., Hinz, N. H., et al. Three-dimensional geologic mapping to assess geothermal potential: Examples from Nevada and Oregon. Geothermal Energy, 2019, 7: 1-32.
Soengkono, S. Assessment on faults and fractures at the Mokai geothermal field, Taupo volcanic zone, New Zealand. Paper Presented at World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May-10 June, 2000.
Souza, S., Tremblay, A., Ruffet, G., et al. Ophiolite obduction in the Québec Appalachians, Canada — 40Ar/39Ar age constraints and evidence for syntectonic erosion and sedimentation. Canadian Journal of Earth Sciences, 2011, 49: 91-110.
Tang, X. Y., Zhang, G. C., Liang, J. S., et al. Modelling of thermal effects of igneous intrusions on the temperature field and organic maturity in the changchang sag, Qiongdongnan basin, South China Sea. Chinese Journal of Geophysics, 2014, 57(2): 219-229. (in Chinese)
Tappe, S., Foley, S., Kjarsgaard, B., et al. Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochimica et Cosmochimica Acta, 2008, 72: 3258-3286.
Theriault, R., Laliberte, J. Y., Brisebois, D., et al. Finger-printing of the Ottawa-Bonnechere and Saguenay grabens under the Saint-Lawrence Lowlands and Québec Appalachians: Prime targets for hydrocarbon exploration. Paper Presented at the Geological Association of Canada, Annual Conference, Halifax, Nova Scotia, 16-18 May, 2005.
Tran Ngoc, T. D., Konstantinovskaya, E., Lefebvre, R., et al. Caractérisation hydrogéologique et pétrophysique des aquifères salins profonds de la région de Bécancour pour leur potentiel de séquestration géologique du CO2 . Institut national de la recherche scientifique-Centre Eau Terre Environnement, INRSCO2-2011-V2.6, Québec, 2012.
Treiman, A. H., Essene, E. J. The Oka carbonatite complex, Québec: Geology and evidence for silicate–carbonate liquid immiscibility. American Mineralogist, 1985, 70: 1101-1113.
Tremblay, A., Long, B., Massé, M. Supracrustal faults of the St. Lawrence rift system, Québec: Kinematics and geometry as revealed by field mapping and marine seismic reflection data. Tectonophysics, 2003, 369: 231-252.
Valiquette, G., Pouliot, G. Geology of Mounts Brome and Shefford. Ministére des Richesses naturelles du Québec. E.S. 1977.
Wen, J., Bell, K., Blenkinsop, J. Nd and Sr isotope systematics of the Oka complex, Québec, and their bearing on the evolution of the sub-continental upper mantle. Contributions to Mineraloy and Petrology, 1987, 97: 433-437.
Williams, D. A. Paleozoic geology of the Ottawa-St. Lawrence Lowland, southern Ontario. Ontario Geological Survey, 1991, 116: 107-110.
Yang, W. B., Han, S. B., Li, W. Geological factors controlling deep geothermal anomalies in the Qianjiaying Mine, China. International Journal of Mining Science and Technology, 2020, 30: 839-847.