Review on recent liquefied natural gas cold energy utilization in power generation cycles

Authors

  • Guojun Yu* Merchant Marine College, Shanghai Maritime University, Shanghai 201306, P. R. China; School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China(Email: gjyu@shmtu.edu.cn)
  • Sheng Jia Merchant Marine College, Shanghai Maritime University, Shanghai 201306, P. R. China
  • Bing Dai China Petroleum Technology & Development Corporation, Beijing 100009, P. R. China

Keywords:

Liquefied natural gas, cold energy, power generation

Abstract

Liquefied natural gas (LNG) needs to be gasified before supplied to the users, and considerable amount of cold energy, about 830 kJ/kg, will be released during this process. Recovery of LNG cold energy bears significance of energy-saving and environmental protection. Among the many ways of using LNG cold energy, power generation is the most effective and suitable one for large-scale applications. Many novel power generation cycles have been designed for utilizing LNG cold energy so far. This paper reviews the recent researches on LNG cold energy utilization in power generation, and discusses 15 novel power generation cycles utilizing LNG cold energy.

Cited as: Yu, G., Jia, S., Dai, B. Review on recent liquefied natural gas cold energy utilization in power generation cycles. Advances in Geo-Energy Research, 2018, 2(1): 86-102, doi: 10.26804/ager.2018.01.08

References

Al-Musleh, E.I., Mallapragada, D.S., Agrawal, R. Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture. J. Power Sources 2015, 274: 130-141.

Angelino, G. Use of liquid natural-gas as heat sink for power cycles. J. Eng. Gas Power 1978, 100(1): 169-177.

Ansarinasab, H., Mehrpooya, M. Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle. Appl. Therm. Eng. 2016, 114: 719-732.

Arsalis, A., Alexandrou, A. Thermoeconomic modeling and exergy analysis of a decentralized liquefied natural gas-fueled combined-coolingheating-and-power plant. J. Nat. Gas Sci. Eng. 2014, 21: 209-220.

Aspelund, A., Gundersen, T. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage-Part 1. Appl. Energy 2009, 86(6): 781-792.

Bai F.F., Zhang, Z.X. Integration of low-level waste heat recovery and liquefied nature gas cold energy utilization. Chin. J. Chem. Eng. 2008, 16(1): 95-99.

Bao, J., Lin, Y., Zhang, R., et al. Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery. Appl. Therm. Eng. 2017, 126: 566-582.

Bian, H.J., Xu, W.D., Li, X.X., et al. A novel process for natural gas liquids recovery from oil field associated gas with liquefied natural gas cryogenic energy utilization. Chin. J. Chem. Eng. 2011, 19(3): 452-461.

Cao, W., Beggs, C., Mujtaba, I.M. Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy. Desalination 2015, 355: 22-32.

Cengel, Y.A., Boles, M.A. Thermodynamics: An Engineering Approach. New York, USA, McGraw-Hill, 2006.

Chang, J., Zuo, J., Lu, K.J., et al. Freeze desalination of seawater using LNG cold energy. Water Res. 2016, 102: 282.

Chen, Y., Zhu, Z., Wu, J., et al. A novel LNG/O2 , combustion gas and steam mixture cycle with energy storage and CO2 capture. Energy 2017, 120: 128-137.

Cherchi, C., Badruzzaman, M., Becker, L., et al. Natural gas and grid electricity for seawater desalination: An economic and environmental life-cycle comparison. Desalination 2017, 414: 89-97.

Chiesa, P. LNG receiving terminal associated with gas cycle power plants. Paper No. 97-GT-441 Presented at International Gas Turbine & Aeroengine Congress & Exhibition, Orlando (FL), 2-5 June, 1997.

Choi, I.H., Lee, S., Seo, Y., et al. Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery. Energy 2013, 61(6): 179-195.

Cravalho, E.G., Mcgrath, J.J., Toscano, W.M. Thermodynamic analysis of the regasification of LNG for the desalination of sea water. Cryogenics 1977, 17(3): 135-139.

Deng, S.M., Jin, H.G., Cai, R.X., et al. Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization. Energy 2004, 29(4): 497-512.

Dong, H., Zhao, L., Zhang, S., et al. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle. Energy 2013, 63(1):10-18.

Ebrahimi, A., Ziabasharhagh, M. Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses. Energy 2017, 126: 868-885.

Franco, A., Casarosa, C. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery. Appl. Therm. Eng. 2015, 78: 649-657.

Gao, T., Lin, W., Gu, A. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized. Energy Convers. Manag. 2011, 52(6): 2401-2404.

Ghaebi, H., Parikhani, T., Rostamzadeh, H. A novel trigener-ation system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis. Renewable Energy 2018, 119: 513-527.

G ´omez, M.R., Garcia, R.F., G ´omez, J.R., et al. Thermody-namic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas). Energy 2014, 66(2): 927-937.

G ´omez, M.R., G ´omez, J.R., L ´opez-Gonzlez, L.M., et al. Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 , capture. Energy 2016, 105: 32-44.

Griepentrog, H., Sackarendt, P. Vaporization of LNG with closed-cycle gas turbines. Paper No. 76-GT-38 Presented at Gas Turbine and Fluids Engineering Conference, New Orleans (LA), 21-25 March, 1976.

Griepentrog, H., Tsatsaronis, G., Morosuk, T. A novel concept for generating electricity and vaporizing LNG. Natural Gas 2008, 1: 2.

He, Y., Li, R., Chen, G., et al. A potential auto-cascade absorption refrigeration system for pre-cooling of LNG liquefaction. J. Nat. Gas Sci. Eng. 2015, 24: 425-430.

Hisazumi, Y., Yamasaki, Y., Sugiyama, S. Proposal for a high efficiency LNG power generation system utilizing waste heat from the combined cycle. Appl. Energy 1998, 60(3): 169-182.

IEA. World Energy Outlook 2017. Organisation for Economic Co-operation and Development, 2017.

Kalinowski, P., Hwang, Y., Radermacher, R., et al. Application of waste heat powered absorption refrigeration system to the LNG recovery process. Int. J. Refrig. 2009, 32(4): 687-694.

Kaneko, K., Ohtani, K., Tsujikawa, Y., et al. Utilization of the cryogenic exergy of LNG by a mirror gas-turbine. Appl. Energy 2004, 79(4): 355-569.

Kano ˇglu, M. Exergy analysis of multistage cascade refrigera-tion cycle used for natural gas liquefaction. Int. J. Energy Res. 2002, 26(8): 763-774.

Kim, C.W., Chang, S.D., Ro, S.T. Analysis of the power cycle utilizing the cold energy of LNG. Int. J. Energy Res. 1995, 19(9): 741-749.

Krey, G. Utilization of the cold by LNG vaporization with closed-cycle gas-turbine. J. Eng. Power 1980, 102(2): 225-230.

Kumar, S., Kwon, H.T., Choi, K.H., et al. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88(12): 4264-4273.

Li, Y., Luo, H. Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization. Chem. Eng. Res. Des. 2015, 93: 632-639.

Lin, W., Huang, M., Gu, A. A seawater freeze desalination prototype system utilizing LNG cold energy. Int. J. Hydrogen Energy 2017, 42: 18691-18698.

Liu, Y., Guo, K. A novel cryogenic power cycle for LNG cold energy recovery. Energy 2012, 36(5): 2828-2833.

Lu, T., Wang, K.S. Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery. Appl. Therm. Eng. 2009, 29(8-9): 1478-1484.

Mehrpooya, M., Esfilar, R., Moosavian, S.M.A. Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture. J. Clean. Prod. 2017, 142: 1749-1764.

Mehrpooya, M., Kalhorzadeh, M., Chahartaghi, M. Investiga-tion of novel integrated air separation processes, cold energy recovery of liquefied natural gas and carbon dioxide power cycle. J. Clean. Prod. 2016, 113: 411-425.

Mehrpooya, M., Rosen, M.A. Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization. Energy 2015, 90: 2047-2069.

Mehrpooya, M., Zonouz, M.J. Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasifica-tion process by exergoeconomic method. Energy Convers. Manag. 2017, 139: 245-259.

Messineo, A., Panno, D. Potential applications using LNG cold energy in Sicily. Int. J. Energy Res. 2008, 32(11): 1058-1064.

Messineo, A., Panno, G. LNG cold energy use in agro-food industry: A case study in Sicily. J. Nat. Gas Sci. Eng. 2011, 3(1): 356-363.

Meysam, K., Majid, A., Naeynian, S.M.M. Thermodynamic design of a cascade refrigeration system of liquefied natural gas by applying mixed integer non-linear programming. Chin. J. Chem. Eng. 2015, 23(6): 998-1008.

Miyazaki, T., Kang, Y.T., Akisawa, A., et al. A combined power cycle using refuse incineration and LNG cold energy. Energy 2000, 25(7): 639-655.

Mokhatab, S., Mak, J.Y., Valappil, J.V., et al. Handbook of Liquefied Natural Gas. Burlington. USA, Gulf Professional Publishing, 2013.

Najjar, Y.S.H. A cryogenic gas-turbine engine using hydrogen for waste heat recovery and regasification of LNG. Int. J. Hydrogen Energy 1991, 16(2): 129-134.

Najjar, Y.S.H., Zaamout, M.S. Cryogenic power conversion with regasification of LNG in a gas-turbine plant. Energy Convers. Manag. 1993, 34(4): 273-280.

Oshima, K., Ishizaki, Y., Kamiyama, S., et al. The utilization of LH2 and LNG cold for generation of electric power by a cryogenic type Stirling engine. Cryogenics 1978, 18(11): 617-620.

Park, J., Lee, I., Moon, I. A novel design of liquefied natural gas (LNG) regasification power plant integrated with cryogenic energy storage system. Ind. Eng. Chem. Res. 2017, 56(5): 1288-1296.

Rao, W.J., Zhao, L.J., Liu, C., et al. A combined cycle utilizing LNG and low-temperature solar energy. Appl. Therm. Eng. 2013, 60(12): 51-60.

Shaik, S.M., Ooi, T.H., Pehkonen, S.O. The prospect of using LNG regasification as a heat sink for seawater desalination. Paper Presented at AIChE Annual Meeting, San Francisco, California, 12-17 November, 2006.

Shi, X., Agnew, B., Che, D., et al. Performance enhancement of conventional combined cycle power plant by inlet air cooling, inter-cooling and LNG cold energy utilization. Appl. Therm. Eng. 2010, 30(14-15): 2003-2010.

Shi, X., Agnew, B., Che, D. Analysis of a combined cycle power plant integrated with a liquid natural gas gasification and power generation system. Proc. Inst. Mech. Eng., Part A 2011, 225(1): 1-11.

Shi, X., Che, D. Thermodynamic analysis of an LNG fuelled combined cycle power plant with waste heat recovery and utilization system. Int. J. Energy Res. 2007, 31(10): 975-998.

Shi, X., Che, D. A combined power cycle utilizing low-temperature waste heat and LNG cold energy. Energy Convers. Manag. 2009, 50(3): 567-575.

Shu, G., Liu, L., Tian, H., et al. Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Appl. Energy 2014, 113(1): 1188-1198.

Song, Y., Wang, J., Dai, Y., et al. Thermodynamic analysis of a transcritical CO2 , power cycle driven by solar energy with liquified natural gas as its heat sink. Appl. Energy 2012, 92(4): 194-203.

Stradioto, D.A., Seelig, M.F., Schneider, P.S. Reprint of: Performance analysis of a CCGT power plant integrated to a LNG regasification process. J. Nat. Gas Sci. Eng. 2015, 23: 112-117.

Sung, T., Kim, K.C. Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold. Appl. Therm. Eng. 2016, 100: 1031-1041.

Tesch, S., Morosuk, T., Tsatsaronis, G. Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process. Energy 2016, 117: 550-561.

Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas. Energy 2010, 35(2): 820-829.

Wang, H., Shi, X., Che, D. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy. Appl. Therm. Eng. 2013, 59(1-2): 490-497.

Wang, K., Dubey, S., Choo, F.H., et al. Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat. Energy 2017, 127: 280-290.

Wang, P., Chung, T.S. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy. Water Res. 2012, 46(13): 4037-4052.

Wang, Q., Li, Y., Wang, J. Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source. Appl. Therm. Eng. 2004, 24(4): 539-548.

Wong, W. LNG power recovery. Proc. Inst. Mech. Eng., Part A 1994, 208(1): 3-12.

Xiang, Y.L., Cai, L., Guan, Y., et al. Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion. Appl. Energy 2018, 212: 465-477.

Xu, W., Duan, J., Mao, W. Process research and analysis on potential development of a novel air separation process cooled by LNG cold energy. Adv. Mater. Res. 2013, 805: 609-615.

Xu, W., Duan, J., Mao, W. Process study and exergy analysis of a novel air separation process cooled by LNG cold energy. J. Therm. Sci. 2014, 23(1): 77-84.

Zhang, C., Jin, H., Shao, G., et al. Selection of working fluid and parameters optimization for cryogenic power generation of LNG. Chemical Engineering of Oil & Gas 2015, 44(4): 54-58. (in Chinese)

Zhang, F., Yu, X.M. LNG cold energy recovery and power generation. Paper Presented at Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27-31 March, 2009.

Zhang, N., Lior, N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy 2006, 31(10-11): 1666-1679.

Zhang, N., Lior, N., Liu, M., et al. COOLCEP (cool clean efficient power): A novel CO-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization. Energy 2010, 35(2): 1200-1210.

Zheng, J., Li, Y., Li, G., et al. Simulation of a novel single-column cryogenic air separation process using LNG cold energy. Phys. Procedia 2015, 67: 116-122.

Downloads

Download data is not yet available.

Downloads

Published

2018-02-26

Issue

Section

Articles