Geochemistry in geologic CO2 utilization and storage: A brief review
Keywords:
Geologic CO2 storage, CO2-rock reaction, mineral, wellbore cement, permeabilityAbstract
In this brief review, a comprehensive collection of previous studies about geochemistry in geologic CO2 utilization and storage is presented and discussed to demonstrate the importance of CO2-rock and CO2-wellbore cement interactions in geologic CO2 utilization and storage scenarios. For CO2-rock interaction, CO2 injection reduces the pH of brine in CO2 storage reservoir, which triggers dissolution of silicate and oxide minerals in the reservoir. Dissolution of silicate and oxide minerals causes concentration increase of cations and anions, which induces secondary precipitation of silica, silicates and carbonates. For CO2-cement interaction, the interaction between CO2 and wellbore cement results in formation of a unique “sandwich” structure in cement (i.e., one carbonate precipitation zone in the middle and two dissolution zones on two sides). For both CO2-rock and CO2-cement interactions, pH plays a key role in the extent of mineral dissolution and precipitation, and the extent is dependent on pH buffering capacity of the CO2 storage reservoir. The potential of CO2-induced contaminant mobilization in deep CO2 storage reservoir and shallow aquifer is also discussed, and the chance for CO2 injection and CO2 leakage to cause severe shallow aquifer contamination is low.
Cited as:Zhang, L., Wang, Y., Miao, X., Gan, M., Li, X. Geochemistry in geologic CO2 utilization and storage: A brief review. Advances in Geo-Energy Research, 2019, 3(3): 304-313, doi: 10.26804/ager.2019.03.08
ReferencesAdeoye, J.T., Menefee, A.H., Xiong, W., et al. Effect of transport limitations and fluid properties on reaction products in fractures of unaltered and serpentinized basalt exposed to high PCO2 fluids. Int. J. Greenhouse Gas Control 2017, 63: 310-320.
Agnelli, M., Grandia, F., Soler, D., et al. Metal release in shallow aquifers impacted by deep CO2 fluxes. Energy Procedia 2018, 146: 38-46.
AiChE. What is CCUS?. 2019.
Allen, D.E., Strazisar, B.R., Soong, Y., et al. Modeling carbon dioxide sequestration in saline aquifer: Significance of elevated pressures and salinities. Fuel Process. Technol. 2005, 86(14-15): 1569-1580.
Bachu, S., Adams, J.J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 2003, 44: 3151-3175.
Bacon, D.H., Dai, Z., Zheng, L. Geochemical impacts of carbon dioxide, brine, trace metal and organic leakage into an unconfined, oxidizing limestone aquifer. Energy Procedia 2014, 63: 4684-4707.
Barlet-Gouédard, V., Rimmelé, G., Goffé, B., et al. Well technologies for CO2 geological storage: CO2-resistant cement. Oil Gas Sci. Technol. 2007, 62(3): 325-334.
Brunet, J.P.L., Li, L., Karpyn, Z.T., et al. Fracture opening or self-sealing: Critical residence time as a unifying parameter for cement-CO2 -brine interactions. Int. J. Greenhouse Gas Control 2016, 47: 25-37.
Carey, J.W., Lichtner, P.C. Calcium silicate hydrate (CSH) solid solution model applied to cement degradation using the continuum reactive transport model FLOTRAN, in Transport Properties and Concrete Quality: Materials Science of Concrete, edited by B. Mobasher and J. Skalny, American Ceramic Society, John Wiley & Sons, Inc., pp. 73-106, 2007.
De Silva, G.P.D., Ranjith, P.G., Perera, M.S.A. Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel 2015, 155: 128-143.
Duguid, A. The effect of carbonic acid on well cements as identifified through lab and field studies. Paper SPE 119504 Presented at the SPE Eastern Regional/AAPG Eastern Section Joint Meeting, Pittsburgh, Pennsylvania, USA, 11-15 October, 2008.
Fabbri, A., Corvisier, J., Schnubel, A., et al. Effect of carbonation on the hydro-mechanical properties of Portland cements. Cem. Concr. Res. 2009, 39(12): 1156-1163.
Farquhar, S.M., Dawson, G.K.W., Esterle, J.S., et al. Mineralogical characterisation of a potential reservoir system for CO2 sequestration in the Surat Basin. Aust. J. Earth Sci. 2013, 60 (1): 91-110.
Gao, J., Xing, H., Tian, Z., et al. Reactive transport in porous media for CO2 sequestration: Pore scale modeling using the lattice Boltzmann method. Comput. Geosci. 2017, 98: 9-20.
Gherardi, F., Audigane, P., Gaucher, E.C. Predicting long-term geochemical alteration of wellbore cement in a generic geological CO2 confinement site: Tackling a difficult reactive transport modeling challenge. J. Hydrol. 2012, 420: 340-359.
Gislason, S.R., Broecker, W.S., Gunnlaugsson, E., et al. Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia 2014, 63: 4561-4574.
Gunter, W.D., Wiwchar, B., Perkins, E.H. Aquifer disposal of CO2 -rich greenhouse gases: Extension of the time scale of experiment for CO2 -sequestering reactions by geochemical modelling. Mineral. Petrol. 1997, 59(1-2): 121-140.
Harvey, O.R., Qafoku, N., Cantrell, K.J., et al. Geochemical implications of CO2 leakage associated with geologic storage: A review. US, Department of Energy Report Series, 2012.
Jacquemet, N., Pironon, J., Lagneau, V., et al. Armouring of well cement in H2S-CO2 saturated brine by calcite coating-Experiments and numerical modelling. Appl. Geochem. 2012, 27(3): 782-795.
Kutchko, B.G., Strazisar, B.R., Lowry, G.V., et al. Rate of CO2 qttack on hydrated class H well cement under geologic sequestration conditions. Environ. Sci. Technol. 2008, 42(16): 6237-6242.
Lagneau, V., Pipart, A., Catalette, H., et al. Reactive transportmodelling of CO2 sequestration in deep saline aquifers. Oil Gas Sci. Technol. 2005, 60(2): 231-247.
Li, Y., Pang, Z., Yang, F. CO2 -EATER model on guantao formation of beitang sag. Sci. Technol. Rev. 2013, 31(27): 15-20.
Li, Y., Pang, Z., Yang, F., et al. Geochemical responses of a saline aquifer to CO2 injection: Experimental study on Guantao formation of Bohai Bay Basin, East China. Greenhouse Gases: Sci. Technol. 2016, 6(1): 125-137.
Liu, K., Sun, Y., Yu, Q. Characteristics of dissolution of CO2 geological storage applied to the ordovician reef limestone in bachu area of Tarim Basin. J. Earth Sci. Environ. 2013, 35(3): 106-112.
Luhmann, A.J., Kong, X.Z., Tutolo, B.M., et al. Experimental dissolution of dolomite by CO2 -charged brine at 100 ◦C and 150 bar: Evolution of porosity, permeability, and reactive surface area. Chem. Geol. 2014, 380: 145-160.
Luquot, L., Gouze, P. Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem. Geol. 2009, 265 (1-2): 148-159.
Marbler, H., Erickson, K.P., Schmidt, M., et al. Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2 : An experimental approach to in situ conditions in deep geological reservoirs. Environ. Earth Sci. 2013, 69(6): 1981-1998.
Meng, F., Li, C., Liu, L., et al. Experiment of CO2 -saline water-calcite interactions. Geol. Sci. Technol. Info. 2013, 32(3): 171-176.
Miller, Q.R., Wang, X., Kaszuba, J.P., et al. Experimental study of porosity changes in shale caprocks exposed to carbon dioxide-saturated brine II: Insights from aqueous geochemistry. Environ. Eng. Sci. 2016, 33 (10): 736-744.
Moore, J., Adams, M., Allis, R., et al. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the SpringervilleSt. Johns Field, Arizona, and New Mexico, USA. Chem. Geol. 2005, 217(3-4): 365-385.
Pachauri, R.K., Allen, M.R., Barros, V.R., et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, IPCC, 2014.
Rimmele, G., Barlet-Gouedard, V., Porcherie, O., et al. Heterogeneous porosity distribution in Portland cement exposed to CO2 -rich fluids. Cem. Concr. Res. 2008, 38(8-9): 1038-1048.
Schaef, H.T., Horner, J.A., Owen, A.T., et al. Mineralization of basalts in the CO2 -H2O-SO2 -O2 system. Environ. Sci. Technol. 2014, 48(9): 5298-5305.
Soong, Y., Howard, B.H., Dilmore, R.M., et al. CO2 /brine/rock interactions in Lower Tuscaloosa formation. Greenhouse Gases: Sci. Technol. 2016, 6(6): 824-837.
Trautz, R.C., Pugh, J.D., Varadharajan, C., et al. Effect of dissolved CO2 on a shallow groundwater system: A controlled release field experiment. Environ. Sci. Technol. 2012, 47(1): 298-305.
U.S. DOE. Carbon Storage Atlas-Fifth Edition (Atlas V). Verba, C., O(cid:48)Connor, W., Rush, G., et al. Geochemical alteration of simulated wellbores of CO2 injection sites within the Illinois and Pasco Basins. Int. J. Greenhouse Gas Control 2014, 23: 119-134.
Wang, Y., Zhang, L., Soong, Y., et al. From core-scale experiment to reservoir-scale modeling: A scale-up approach to investigate reaction-induced permeability evolution of CO2 storage reservoir and caprock at a U.S. CO2 storage site. Comput. Geosci. 2019, 125: 55-68.
Wei, N., Li, X., Wang, Y., et al. Geochemical impact of aquifer storage for impure CO2 containing O2 and N2 : Tongliao field experiment. Appl. Energy 2015, 145: 198-210.
Wigand, M., Kaszuba, J.P., Carey, J.W., et al. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface. Chem. Geol. 2009, 205(1-2): 122-133.
Worldcoal.org. Carbon-Capture Use and Storage. 2019.
Xu, T., Apps, J. A., Pruess, K., et al. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl. Geochem. 2004, 19(6): 917-936.
Xu, T., Apps, J.A., Pruess, K. Mineral sequestration of carbon dioxide in a sandstoneshale system. Chem. Geol. 2005, 217(3): 295-318.
Yang, C., Hovorka, S.D., Trevino, R.H., et al. Integrated framework for assessing impacts of CO2 leakage on groundwater quality and monitoring-network efficiency: Case study at a CO2 enhanced oil recovery site. Environ. Sci. Technol. 2015a, 49(14): 8887-8898.
Yang, C., Trevino, R.H., Hovorka, S.D., et al. Semi-analytical approach to reactive transport of CO2 leakage into aquifers at carbon sequestration sites. Greenhouse Gases: Sci. Technol. 2015b, 5(6): 786-801.
Yang, W., Maroto-valer, M., Steven, M.D. Environmental consequences of potential leaks of CO2 in soil. Energy Procedia 2011, 4: 3224-3230.
Yu, Z., Yang, S., Liu, L., et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO2 . Acta Petrolei Sinica 2012, 33(6): 1032-1042. (in chinese) Zerai, B., Saylor, B.Z., Matisoff, G. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Appl. Geochem. 2006, 21(2): 223-240.
Zhang, L., Dzombak, D.A., Kutchko B.G., Wellbore cement integrity under geologic carbon sequestration conditions. United States of America, Elsevier, 2015c.
Zhang, L., Dzombak, D.A., Nakles, D.V., et al. Characterization of pozzolan-amended wellbore cement exposed to CO2 and H2S gas mixtures under geologic carbon storage conditions. Int. J. Greenhouse Gas Control 2013, 19: 358-368.
Zhang, L., Miao, X., Wang, Y., et al. Numerical simulation of subsurface uranium (U) leaching and migration under geologic carbon storage conditions. In: Zhan L., Chen Y., Bouazza A. (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3. ICEG 2018, Environmental Science and Engineering, Springer, Singapore, 2019b.
Zhang, L., Parthasarathy, H., Karamalidis, A. Investigation on arsenopyrite dissolution and as (III) migration under geologic carbon storage conditions: A numerical simulation approach. Greenhouse Gases: Sci. Technol. 2017, 7(3): 460-473.
Zhang, L., Soong, Y., Dilmore, R., et al. Numerical simulation of porosity and permeability evolution of Mount Simon sandstone under geological carbon sequestration conditions. Chem. Geol., 2015b, 403: 1-12.
Zheng, L., Spycher, N., Birkholzer, J., et al. On modeling the potential impacts of CO2 sequestration on shallow groundwater: Transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers. Int. J. Greenhouse Gas Control 2013, 14: 113-127.
Zhang, S., DePaolo, D.J. Rates of CO2 mineralization in geological carbon storage. Accounts Chem. Res. 2017, 50(9): 2075-2084.
Zhang, S., DePaolo, D.J., Voltolini, M., et al. CO2 mineralization in volcanogenic sandstones: Geochemical characterization of the Etchegoin formation, San Joaquin Basin. Greenhouse Gases: Sci. Technol. 2015a, 5: 622-644.