A review on zeolitic imidazolate frameworks use for crude oil spills cleanup

Authors

  • Mozhgan Shahmirzaee Institute of Mineral Industries, Shahid Bahonar University of Kerman, Kerman, Iran
  • Abdolhossein Hemmati-Sarapardeh* Institute of Mineral Industries, Shahid Bahonar University of Kerman, Kerman, Iran; Institute of Mineral Industries, Shahid Bahonar University of Kerman, Kerman, Iran (Email: aut.hemmati@gmail.com)
  • Maen M. Husein Department of Chemical&Petroleum Engineering, University of Calgary, Canada
  • Mahin Schaffie Institute of Mineral Industries, Shahid Bahonar University of Kerman, Kerman, Iran; Institute of Mineral Industries, Shahid Bahonar University of Kerman, Kerman, Iran
  • Mohammad Ranjbar Institute of Mineral Industries, Shahid Bahonar University of Kerman, Kerman, Iran; Institute of Mineral Industries, Shahid Bahonar University of Kerman, Kerman, Iran

Keywords:

Zeolitic imidazolate frameworks, metal organic frameworks, oil spill, separation, pollution, water treatment

Abstract

Oil spills are a global concern by virtue of their distractive effects on the ecosystem. Many studies have examined the use of porous materials as sorbents for contaminants from different polluted waters. For example, hydrophobic metal organic frameworks, especially zeolitic imidazolate frameworks (ZIFs) with high porosity, have attracted lots of attention. ZIFs are a subclass of metal organic frameworks and display an excellent performance toward oil/water separation compared with other porous materials. Nevertheless, the performance of ZIFs toward oil spills cleanup has not been reviewed. Accordingly, this article overviews the different methods for ZIF preparation, their corresponding structure, and their various applications as sorbents and in particular, recent developments in cleaning up oil spills with meso and micro-porous ZIFs. The investigation of the literatures revealed that the effective parameters on the performance of porous ZIFs are specific surface area, pore diameters of ZIF, and the size of cavities due to interconnecting of ZIF particles. The ZIF-8 with a high surface area of 1408 m2/g and 1384.2 m2/g and adsorption capacity up to 3000 mg/g was studied more than the other ZIF structures. Models predications revealed the maximum adsorption capacity of 6633 mg/g for ZIF-8. Recently, investigations focused on carbonitride foam and melamine sponge as templates of ZIF powder. In comparison with synthesis methods, dip coating as a facial synthesis method was introduced for production and anchoring ZIF particles on the substrate. The recyclability of crude oil and the reusability of the ZIF sorbents are highlighted. Moreover, this article reviews recent developments of ZIFs synthesis, current challenges, and prospects for the use of ZIFs in oil/water separation. The findings of this study can help to better understand widespread applications of ZIFs, effective features of a sorbent, and methods to improve adsorption capacity. As cleaning up oil spills is known as an important issue, this is the first study on ZIFs in particular oil/water separation which provides a summary of researches in a simple form along with recent developments compared to published reviews.

Cited as: Shahmirzaee, M., Hemmati-Sarapardeh, A., Husein, M.M., Schaffie, M., Ranjbar, M. A review on zeolitic imidazolate frameworks use for crude oil spills cleanup. Advances in Geo-Energy Research, 2019, 3(3): 320-342, doi: 10.26804/ager.2019.03.10

References

Abbasi, Z., Shamsaei, E., Fang, X.Y., et al. Simple fabrication of zeolitic imidazolate framework zif-8/polymer composite beads by phase inversion method for efficient oil sorption. J. Colloid Interface Sci. 2017, 493: 150-161.

Abdi, J., Mahmoodi, N.M., Vossoughi, M., et al. Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@Si02@MnFe2O4 ) as a novel adsorbent for selective dye removal from multicomponent systems. Microporous Mesoporous Mater. 2019, 273: 177-188.

Adnan, M., Li, K., Wang, J., et al. Hierarchical ZIF-8 toward immobilizing burkholderia cepacia lipase for application in biodiesel preparation. Int. J. Mol. Sci. 2018a, 19(5): E1424.

Adnan, M., Li, K., Xu, L., et al. X-shaped ZIF-8 for immobilization rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts 2018b, 8(3): 96.

Ahmed, I., Bhadra, B.N., Lee, H.J., et al. Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water. Catal. Today 2018, 301: 90-97.

Andrew Lin, K.Y., Chang, H.A. A zeolitic imidazole frame-work (ZIF)-sponge composite prepared via a surfactant-assisted dip-coating method. J. Mater. Chem. A 2015, 3(40): 20060-20064.

Arul, P., John, S.A. Organic solvent free in situ growth of flower like co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim. Acta 2019, 306: 254-263.

Assfour, B., Leoni, S., Seifert, G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11. J. Phys. Chem. C 2010, 114(31): 13381-13384.

Bagheri, N., Khataee, A., Hassanzadeh, J., et al. Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8. Spectrochim. Acta A 2019, 209: 118-125.

Bai, Y., Dong, L., Zhang, C., et al. ZIF-8 filled polydimethyl-siloxane membranes for pervaporative separation of n-butanol from aqueous solution. SPE Sci. Technol. 2013, 48(17): 2531-2539.

Banerjee, R., Phan, A., Wang, B., et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319(5865): 939-943.

Barooah, M., Mandal, B. Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane. J. Memb. Sci. 2019, 572: 198-209.

Bhadra, B.N., Seo, P.W., Khan, N.A., et al. Hydrophobic cobalt-ethylimidazolate frameworks: Phase-pure syntheses and possible application in cleaning of contaminated water. Inorg. Chem. 2016, 55(21): 11362-11371.

Bhardwaj, N., Bhaskarwar, A.N. A review on sorbent devices for oil-spill control. Environ. Pollut. 2018, 243: 1758-1771.

Bhattacharjee, S., Jang, M.S., Kwon, H.J., et al. Zeolitic imidazolate frameworks: Synthesis, functionalization, and catalytic/adsorption applications. Catal. Surv. Asia 2014, 18(4): 101-127.

Bian, Z., Zhang, S., Zhu, X., et al. In situ interfacial growth of zeolitic imidazolate framework (ZIF-8) nanoparticles induced by a graphene oxide pickering emulsion. RSC Adv. 2015, 5(40): 31502-31505.

Bo, S., Ren, W., Lei, C., et al. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr (IV) from water. J. Solid State Chem. 2018, 262: 135-141.

Bu, X., Lu, Y., Chen, S., et al. Fabrication of porous carbon nitride foams/acrylic resin composites for efficient oil and organic solvents capture. Chem. Eng. J. 2019, 355: 299-308.

Bux, H., Feldhoff, A., Cravillon, J., et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2 /C3H8 molecular sieve separation. Chem. Mater. 2011, 23(8): 2262-2269.

Bux, H., Liang, F., Li, Y., et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2009, 131(44): 16000-16001.

Chen, E.X., Yang, H., Zhang, J. Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 2014, 53(11): 5411-5413.

Chizallet, C., Lazare, S., Bazer-Bachi, D., et al. Catalysis of transesterification by a nonfunctionalized metalorganic framework: Acido-basicity at the external surface of ZIF-8 probed by ftir and ab initio calculations. J. Am. Chem. Soc. 2010, 132(35): 12365-12377.

Cousin Saint Remi, J., Rmy, T., Van Hunskerken, V., et al. Biobutanol separation with the metal-organic framework ZIF-8. ChemSusChem 2011, 4(8): 1074-1077.

Dai, X., Cao, Y., Shi, X., et al. The pla/zif-8 nanocomposite membranes: The diameter and surface roughness adjustment by ZIF-8 nanoparticles, high wettability, improved mechanical property, and efficient oil/water separation. Adv. Mater. Interfaces 2016, 3(24): 1600725.

Dejam, M. Dispersion in non-newtonian fluid flows in a conduit with porous walls. Chem. Eng. Sci. 2018, 189: 296-310.

Dejam, M. Derivation of dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a porous-walled microchannel. Chem. Eng. Sci. 2019a, 204: 298-309.

Dejam, M. Hydrodynamic dispersion due to a variety of flow velocity profiles in a porous-walled microfluidic channel. Int. J. Heat Mass Transf. 2019b, 136: 87-98.

Dejam, M., Hassanzadeh, H., Chen, Z. Shear dispersion in combined pressure-driven and electro-osmotic flows in a capillary tube with a porous wall. AIChE J. 2015a, 61(11): 3981-3995.

Dejam, M., Hassanzadeh, H., Chen, Z. Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls. Chem. Eng. Sci. 2015b, 137: 205-215.

Esfahanian, M., Ghasemzadeh, M.A., Razavian, S.M.H. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2019, 47(1): 2024-2030.

Feng, X.J., Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006, 18(23): 3063-3078.

Fingas, M. Chapter 14-spill-treating Agents, in Oil Spill Science and Technology. Boston, USA, Gulf Professional Publishing, 2011.

Fu, Q., Ansari, F., Zhou, Q., et al. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 2018, 12(3): 2222-2230.

Gao, M.L., Zhao, S.Y., Chen, Z.Y., et al. Superhydrophobic/-superoleophilic mof composites for oil-water separation. Inorg. Chem. 2019, 58(4): 2261-2264.

Gao, X., Xu, L.P., Xue, Z., et al. Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Adv. Mater. 2014, 26(11): 1771-1775.

J., Ye, Y.D., Yao, H.B., et al. Pumping through porous hydrophobic/oleophilic materials: An alternative technology for oil spill remediation. Angew. Chem. Int. Ed. 2014, 53(14): 3612-3616.

Ge, Go, Y., Lee, J.H., Shamsudin, I.K., et al. Microporous ZIF-7 membranes prepared by in-situ growth method for hydrogen separation. Int. J. Hydrogen Energy 2016, 41(24): 10366-10373.

Gore, P.M., Purushothaman, A., Naebe, M., et al. Nanotechnology for Oil-water Separation, in Advanced Research in Nanosciences for Water Technology. Cham, Springer International Publishing, 2019.

Gross, A.F., Sherman, E., Vajo, J.J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton T. 2012, 41(18): 5458-5460.

Guan, Y., Cheng, F., Pan, Z. Superwetting polymeric three dimensional (3d) porous materials for oil/water separation: A review. Polymers 2019, 11(5): 806.

Guo, Y., Wang, X., Hu, P., et al. ZIF-8 coated polyvinylidene-fluoride (pvdf) hollow fiber for highly efficient separation of small dye molecules. Appl. Mater. Today 2016, 5: 103-110.

Hou, X.J., Li, H. Unraveling the high uptake and selectivity of CO2 in the zeolitic imidazolate frameworks ZIF-68 and ZIF-69. J. Phys. Chem. C 2010, 114(32): 13501-13508.

Huang, A., Caro, J. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angew. Chem. Int. Ed. 2011, 50(21): 4979-4982.

Huang, A., Chen, Y., Wang, N., et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2 /CO2 separation. Chem. Commun. 2012a, 48(89): 10981-10983.

Huang, A., Dou, W., Caro, J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 2010, 132(44): 15562-15564.

Huang, A., Liu, Q., Wang, N., et al. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 2014, 136(42): 14686-14689.

Huang, A., Wang, N., Kong, C., et al. Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. Angew. Chem. Int. Ed. 2012b, 51(42): 10551-10555.

Huang, G., Zhang, F., Du, X., et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithiumion batteries. ACS Nano 2015, 9(2): 1592-1599.

Hurd, J.A., Vaidhyanathan, R., Thangadurai, V., et al. Anhydrous proton conduction at 150 ◦C in a crystalline metal-organic framework. Nat. Chem. 2009, 1: 705.

International Tanker Owners Pollution Federation (ITOPF). 2019.

Isanejad, M., Arzani, M., Mahdavi, H.R., et al. Novel amine modification of ZIF-8 for improving simultaneous removal of cationic dyes from aqueous solutions using supported liquid membrane. J. Mol. Liq. 2017, 225: 800-809.

Jayaramulu, K., Datta, K.K.R., Rsler, C., et al. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation. Angew. Chem. Int. Ed. 2016, 55(3): 1178-1182.

Jayaramulu, K., Geyer, F., Petr, M., et al. Shape controlled hierarchical porous hydrophobic/oleophilic metal-organic nanofibrous gel composites for oil adsorption. Adv. Mater. 2017, 29(12): 1605307.

Jiang, H.L., Liu, B., Akita, T., et al. Au@ZIF-8: Co oxidation over gold nanoparticles deposited to metalorganic framework. J. Am. Chem. Soc. 2009, 131(32): 11302-11303.

Jiang, J.Q., Yang, C.X., Yan, X.P. Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl. Mater. Interfaces 2013, 5(19): 9837-9842.

Jiang, P., Hu, Y., Li, G. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced raman scattering imaging and drug delivery. Talanta 2019a, 200: 212-217.

Jiang, Z., Wang, Y., Sun, L., et al. Dual atp and ph responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials 2019b, 197: 41-50.

Jin, H., Li, Y., Liu, X., et al. Recovery of hmf from aqueous solution by zeolitic imidazolate frameworks. Chem. Eng. Sci. 2015, 124: 170-178.

Kharisov, B.I., Dias, H.V.R., Kharissova, O.V. Nanotechnology-based remediation of petroleum impurities from water. J. Pet. Sci. Eng. 2014, 122: 705-718.

Khay, I., Chaplais, G., Nouali, H., et al. Water intrusion-extrusion experiments in ZIF-8: Impacts of the shape and particle size on the energetic performances. RSC Adv. 2015, 5(40): 31514-31518.

Khosravi, M., Azizian, S. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl. Mater. Interfaces 2015, 7(45): 25326-25333.

Kim, D., Kim, D.W., Buyukcakir, O., et al. Highly hydrophobic ZIF-8/Carbon nitride foam with hierarchical porosity for oil capture and chemical fixation of CO2 . Adv. Funct. Mater. 2017, 27(23): 1700706.

Kou, Z., Dejam, M. Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium. Phys. Fluids 2019, 31(5): 056603.

Kumar, R., Raut, D., Ahmad, I., et al. Functionality preservation with enhanced mechanical integrity in the nanocomposites of the metal-organic framework, zif-8, with bn nanosheets. Mater. Horiz. 2014, 1(5): 513-517.

Kumar, V., Vellingiri, K., Kukkar, D., et al. Recent advances and opportunities in the treatment of hydrocarbons and oils: Metal-organic frameworks-based approaches. Crit. Rev. Environ. Sci. Technol. 2019, 49(7): 587-654.

Kuruppathparambil, R.R., Jose, T., Babu, R., et al. A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Appl. Catal. B 2016, 182: 562-569.

Kvenvolden, K.A., Cooper, C.K. Natural seepage of crude oil into the marine environment. Geo-Mar. Lett. 2003, 23(3): 140-146.

Lahann, J. Environmental nanotechnology: Nanomaterials clean up. Nat. Nanotechnol. 2008, 3: 320-321.

Lee, C.H., Tiwari, B., Zhang, D., et al. Water purification: Oil-water separation by nanotechnology and environmental concerns. Environ. Sci. Nano 2017, 4(3): 514-525.

Lei, W., Portehault, D., Liu, D., et al. Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 2013, 4: 1777.

Lei, Z., Deng, Y., Wang, C. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a knoeve-nagel reaction. J. Mater. Chem. A 2018, 6(7): 3258-3263.

Li, C.R., Hai, J., Fan, L., et al. Amplified colorimetric detection of Ag+ based on Ag+ -triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sens. Actuators B Chem. 2019a, 284: 213-219.

Li, D., Guo, Z. Metal-organic framework superhydrophobic coating on kevlar fabric with efficient drag reduction and wear resistance. Appl. Surf. Sci. 2018, 443: 548-557.

Li, F., Zheng, K., Zhang, H., et al. Nanoscale hierarchically porous metal-organic frameworks: Facile synthesis, mechanism research, and application. ACS Sustain. Chem. Eng. 2019b, 7(13): 11080-11087

Li, J., Li, D., Yang, Y., et al. A prewetting induced under-water superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem. 2016, 18(2): 541-549.

Li, J., Lin, J., Xu, X., et al. Porous boron nitride with a high surface area: Hydrogen storage and water treatment. Nanotechnology 2013, 24(15): 155603.

Li, K., Olson, D.H., Seidel, J., et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 2009, 131(30): 10368-10369.

Li, Q., Guo, J., Zhu, H., et al. Space-confined synthesis of ZIF-67 nanoparticles in hollow carbon nanospheres for CO2 adsorption. Small 2019c, 15(8): 1804874.

Li, Y., Zhang, H., Fan, M., et al. A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments. Phys. Chem. Chem. Phys. 2016, 18(36): 25394-25400.

Liang, H.W., Guan, Q.F., Chen, L.F., et al. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51(21): 5101-5105.

Liang, K., Coghlan, C.J., Bell, S.G., et al. Enzyme encapsulation in zeolitic imidazolate frameworks: A comparison between controlled co-precipitation and biomimetic mineralisation. Chem. Commun. 2016a, 52(3): 473-476.

Liang, K., Richardson, J.J., Cui, J., et al. Metal-organic framework coatings as cytoprotective exoskeletons for living cells. Adv. Mater. 2016b, 28(36): 7910-7914.

Lin, J., Shang, Y., Ding, B., et al. Nanoporous polystyrene fibers for oil spill cleanup. Mar. Pollut. Bull. 2012, 64(2): 347-352.

Lin, K.Y.A., Chen, Y.C., Phattarapattamawong, S. Efficient demulsification of oil-in-water emulsions using a zeolitic imidazolate framework: Adsorptive removal of oil droplets from water. J. Colloid Interface Sci. 2016, 478: 97-106.

Liu, C., Huang, A. One-step synthesis of the superhydrophobic zeolitic imidazolate framework F-ZIF-90 for efficient removal of oil. New J. Chem. 2018, 42(4): 2372-2375.

Liu, J. Construction of Nafion/Hb/Au/ZIF-8/CILE and its application as electrochemical sensor for determination of bromate and nitrite. Int. J. Electrochem. Sci. 2019, 14: 1310-1317.

Liu, X., Li, Y., Ban, Y., et al. Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chem. Commun. 2013, 49(80): 9140-9142.

Liu, Y., Hu, E., Khan, E.A., et al. Synthesis and characterization of ZIF-69 membranes and separation for CO2 /CO mixture. J. Memb. Sci. 2010, 353(1): 36-40.

Lively, R.P., Dose, M.E., Thompson, J.A., et al. Ethanol and water adsorption in methanol-derived ZIF-71. Chem. Commun. 2011, 47(30): 8667-8669.

Lu, G., Hupp, J.T. Metalorganic frameworks as sensors: A ZIF-8 based fabryprot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132(23): 7832-7833.

Mao, J., Ge, M., Huang, J., et al. Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A 2017, 5(23): 11873-11881.

Miao, Z., Yang, F., Luan, Y., et al. Synthesis of Fe3O4@P4VP@ZIF-8 core-shell microspheres and their application in a knoevenagel condensation reaction. J. Solid State Chem. 2017, 256: 27-32.

Michel, J. Chapter 37-1991 Gulf War Oil Spill, in Oil spill science and technology. Boston, USA, Gulf Professional Publishing, 2011.

Moggach, S.A., Bennett, T.D., Cheetham, A.K. The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 gpa. Angew. Chem. 2009, 121(38): 7221-7223.

Mokhatab, S., Fresky, M.A., Islam, M.R. Applications of nanotechnology in oil and gas E&P. J. Pet. Technol. 2006, 58(4): 48-51.

Mondal, S.S., Hovestadt, M., Dey, S., et al. Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation. CrystEngComm 2017, 19(39): 5882-5891.

Nabeel Rashin, M., Kutty, R.G., Hemalatha, J. Novel coconut oil based magnetite nanofluid as an ecofriendly oil spill remover. Ind. Eng. Chem. Res. 2014, 53(40): 15725-15730.

Nakano, T., Nozue, Y. Orbital degeneracy and magnetic properties of potassium clusters incorporated into nanoporous crystals of zeolite A. J. Comput. Methods Sci. Eng. 2007, 7: 443-462.

Nasir, A.M., Md Nordin, N.A.H., Goh, P.S., et al. Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2d ZIF-l) as arsenite adsorbent: Kinetic, isotherm and mechanism. J. Mol. Liq. 2018, 250: 269-277.

Pan, Y., Li, H., Zhang, X.X., et al. Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry. Chem. Eng. Sci. 2015, 137: 504-514.

Parajuli, D., Sue, K., Takahashi, A., et al. Adsorption of ng l1-level arsenic by zif-8 nanoparticles: Application to the monitoring of environmental water. RSC Adv. 2018, 8(63): 36360-36368.

Pendergast, M.M., Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4(6): 1946-1971.

Phan, A., Doonan, C.J., Uribe-Romo, F.J., et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts Chem. Res. 2010, 43(1): 58-67.

Qian, J., Sun, F., Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82: 220-223.

Rankin, R.B., Liu, J., Kulkarni, A.D., et al. Adsorption and diffusion of light gases in ZIF-68 and ZIF-70: A simulation study. J. Phys. Chem. C 2009, 113(39): 16906-16914.

Ren, G., Li, Z., Yang, W., et al. Zno@zif-8 core-shell microspheres for improved ethanol gas sensing. Sens. Actuators B Chem. 2019, 284: 421-427.

Rettig, S.J., Storr, A., Summers, D.A., et al. Iron (ii) 2-methylimidazolate and copper (ii) 1,2,4-triazolate complexes: Systems exhibiting long-range ferromagnetic ordering at low temperatures. Can. J. Chem. 1999, 77(4): 425-433.

Sánchez, J., Zornoza, B., Mayoral, ´A., et al. Beyond the H2/CO2 upper bound: One-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J. Mater. Chem. A 2015, 3(12): 6549-6556.

Sánchez, J., Zornoza, B., Tllez, C., et al. On the chemical filler-polymer interaction of nano-and micro-sized ZIF-11 in pbi mixed matrix membranes and their application for H2 /CO2 separation. J. Mater. Chem. A 2016, 4(37): 14334-14341.

Sann, E.E., Pan, Y., Gao, Z., et al. Highly hydrophobic ZIF-8 particles and application for oil-water separation. Sep. Purif. Technol. 2018, 206: 186-191.

Sarker, M., Bhadra, B.N., Seo, P.W., et al. Adsorption of benzotriazole and benzimidazole from water over a co-based metal azolate framework maf-5 (CO). J. Hazard. Mater. 2017, 324: 131-138.

Seoane, B., Zamaro, J.M., Tllez, C., et al. Insight into the crystal synthesis, activation and application of ZIF-20.

RSC Adv. 2011, 1(5): 917-922.

Shamsaei, E., Lin, X., Low, Z.X., et al. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl. Mater. Interfaces 2016, 8(9): 6236-6244.

Shang, Y., Si, Y., Raza, A., et al. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale 2012, 4(24): 7847-7854.

Shekhah, O., Fu, L., Sougrat, R., et al. Successful implementation of the stepwise layer-by-layer growth of mof thin films on confined surfaces: Mesoporous silica foam as a first case study. Chem. Commun. 2012, 48(93): 11434-11436.

Shi, L., Chen, K., Du, R., et al. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation. J. Am. Chem. Soc. 2016, 138(20): 6360-6363.

Shin, J.H., Heo, J.H., Jeon, S., et al. Bio-inspired hollow pdms sponge for enhanced oil-water separation. J. Hazard. Mater. 2019, 365: 494-501.

Si, Y., Fu, Q., Wang, X., et al. Superelastic and superhydropho-bic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 2015, 9(4): 3791-3799.

Singh, V., Purkait, M.K., Das, C. Cross-flow microfiltration of industrial oily wastewater: Experimental and theoretical consideration. SPE. Sci. Technol. 2011, 46(8): 1213-1223.

Su, P., Xiao, H., Zhao, J., et al. Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem. Sci. 2013, 4(7): 2941-2946.

Sun, C.Y., Qin, C., Wang, X.L., et al. Zeolitic imidazolate framework-8 as efficient ph-sensitive drug delivery vehicle. Dalton T. 2012, 41(23): 6906-6909.

Taylor, J.M., Mah, R.K., Moudrakovski, I.L., et al. Facile proton conduction via ordered water molecules in a phosphonate metalorganic framework. J. Am. Chem. Soc. 2010, 132(40): 14055-14057.

The Guardian Newspaper. 2011.

Thornton, A.W., Dubbeldam, D., Liu, M.S., et al. Feasibility of zeolitic imidazolate framework membranes for clean energy applications. Energy Environ. Sci. 2012, 5(6): 7637-7646.

Tian, D., Zhang, X., Tian, Y., et al. Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater superoleophobicity of the aligned zno nanorod array-coated mesh films. J. Mater. Chem. 2012, 22(37): 19652-19657.

Tian, Y.Q., Cai, C.X., Ji, Y., et al. [Co5 (im)10*2MB]∞ : A metal-organic open-framework with zeolite-like topology. Angew. Chem. Int. Ed. 2002, 41(8): 1384-1386.

Tsai, C.W., Langner, E.H.G. The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater. 2016, 221: 8-13.

Valadez Snchez, E.P., Gliemann, H., Haas-Santo, K., et al. ZIF-8 surmof membranes synthesized by au-assisted liquid phase epitaxy for application in gas separation. Chem. Ing. Tech. 2016, 88(11): 1798-1805.

Venna, S.R., Carreon, M.A. Highly permeable zeolite imidazolate framework-8 membranes for CO2 /CH4 separation. J. Am. Chem. Soc. 2010, 132(1): 76-78.

Wang, G., He, Y., Wang, H., et al. A cellulose sponge with robust superhydrophilicity and under-water superoleo-phobicity for highly effective oil/water separation. Green Chem. 2015a, 17(5): 3093-3099.

Wang, H., Zhou, H., Niu, H., et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance. Adv. Mater. Interfaces 2015b, 2(4): 1400506.

Wang, Q., Wang, X., Shi, C. Ldh nanoflower lantern derived from zif-67 and its application for adsorptive removal of organics from water. Ind. Eng. Chem. Res. 2018a, 57(37): 12478-12484.

Wang, S., Hou, Y., Lin, S., et al. Water oxidation electro-catalysis by a zeolitic imidazolate framework. Nanoscale 2014, 6(17): 9930-9934.

Wang, Y., Feng, Y., Yao, J. Construction of hydrophobic alginate-based foams induced by zirconium ions for oil and organic solvent cleanup. J. Colloid Interface Sci. 2019, 533: 182-189.

Wang, Z., Tang, X., Wang, X., et al. Near-infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated cus nanoparticles and their application as a therapeutic nanoplatform. Chem. Commun. 2016, 52(82): 12210-12213.

Wang, Z., Yu, G., Xia, J., et al. One-step synthesis of a methylene blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin. Microchim. Acta 2018b, 185(5): 279.

Wee, L.H., Janssens, N., Sree, S.P., et al. Local transformation of ZIF-8 powders and coatings into zno nanorods for photocatalytic application. Nanoscale 2014, 6(4): 2056-2060.

Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28(8): 988-994.

Wu, C., Liu, Q., Chen, R., et al. Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on az31 magnesium alloy with impressive corrosion resistance and abrasion resistance. ACS Appl. Mater. Interfaces 2017a, 9(12): 11106-11115.

Wu, D., Fang, L., Qin, Y., et al. Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Mar. Pollut. Bull. 2014a, 84(1): 263-267.

Wu, J., Wang, N., Wang, L., et al. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl. Mater. Interfaces 2012, 4(6): 3207-3212.

Wu, L., Li, L., Li, B., et al. Magnetic, durable, and superhy-drophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and Oil/Water separation. ACS Appl. Mater. Interfaces 2015, 7(8): 4936-4946.

Wu, R., Qian, X., Rui, X., et al. Zeolitic imidazolate framework 67-derived high symmetric porous CO3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014b, 10(10): 1932-1938.

Wu, T., Feng, X., Elsaidi, S.K., et al. Zeolitic imidazolate framework-8 (ZIF-8) membranes for Kr/Xe separation. Ind. Eng. Chem. Res. 2017b, 56(6): 1682-1686.

Xia, W., Mahmood, A., Zou, R., et al. Metal-organic frameworks and their derived nanostructures for electro-chemical energy storage and conversion. Energy Environ. Sci. 2015, 8(7): 1837-1866.

Xue, C.H., Ji, P.T., Zhang, P., et al. Fabrication of super-hydrophobic and superoleophilic textiles for oil-water separation. Appl. Surf. Sci. 2013, 284: 464-471.

Xu, S., Ren, L.F., Zhou, Q., et al. Facile ZIF-8 functionalized hierarchical micronanofiber membrane for high-efficiency separation of water-in-oil emulsions. J. Appl. Polym. Sci. 2018, 135(27): 46462.

Xu, X., Dong, F., Yang, X., et al. Preparation and charac-terization of cellulose grafted with epoxidized soybean oil aerogels for oil-absorbing materials. J. Agric. Food Chem. 2019a, 67(2): 637-643.

Xu, Z., Wang, J., Li, H., et al. Coating sponge with multifunctional and porous metal-organic framework for oil spill remediation. Chem. Eng. J. 2019b, 370: 1181-1187.

Yaghi, O.M., Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117(41): 10401-10402.

Yang, H., He, X.W., Wang, F., et al. Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J. Mater. Chem. 2012, 22(41): 21849-21851.

Yang, Q., Lu, R., Ren, S., et al. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chem. Eng. J. 2018a, 348: 202-211.

Yang, Q., Lu, R., Ren, S., et al. Magnetic beads embedded in poly (sodium-p-styrenesulfonate) and ZIF-67: Removal of nitrophenol from water. J. Solid State Chem. 2018b, 265: 200-207.

Yang, T., Chung, T.S. High performance ZIF-8/pbi nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrogen Energy 2013, 38(1): 229-239.

Yin, H., Khosravi, A., OConnor, L., et al. Effect of ZIF-71 particle size on free-standing ZIF-71/pdms composite membrane performances for ethanol and 1-butanol removal from water through pervaporation. Ind. Eng. Chem. Res. 2017, 56(32): 9167-9176.

Yong, J., Huo, J., Chen, F., et al. Oil/water separation based on natural materials with super-wettability: Recent advances. Phys. Chem. Chem. Phys. 2018, 20(39): 25140-25163.

Yoon, S.M., Park, J.H., Grzybowski, B.A. Large-area, freestanding mof films of planar, curvilinear, or micropat-terned topographies. Angew. Chem. Int. Ed. 2017, 56(1): 127-132.

Yuan, J., Hung, W.S., Zhu, H., et al. Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater. J. Memb. Sci. 2019, 572: 20-27.

Yu, L.Q., Yan, X.P. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem. Commun. 2013, 49(21): 2142-2144.

Yu, Y., Chen, H., Liu, Y., et al. Superhydrophobic and super-oleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup. Adv. Mater. Interfaces 2015, 2(1): 1400267.

Zakzeski, J., Dbczak, A., Bruijnincx, P.C.A., et al. Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9. Appl. Catal. A Gen. 2011, 394(1): 79-85.

Zhang, E., Cheng, Z., Lv, T., et al. Anti-corrosive hierarchical structured copper mesh film with superhydrophilicity and underwater low adhesive superoleophobicity for highly efficient oil-water separation. J. Mater. Chem. A 2015, 3(25): 13411-13417.

Zhang, F., Zhang, W.B., Shi, Z., et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv. Mater. 2013a, 25(30): 4192-4198.

Zhang, G., Zhang, J., Su, P., et al. Non-activation mof arrays as a coating layer to fabricate a stable superhydrophobic micro/nano flower-like architecture. Chem. Commun. 2017, 53(59): 8340-8343.

Zhang, H., Zhao, M., Lin, Y.S. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater. 2019a, 279: 201-210.

Zhang, J., Wang, Y., Xiao, K., et al. N-doped hierarchically porous carbon derived from heterogeneous core-shell ZIF-l(Zn)@ZIF-67 for supercapacitor application. New J. Chem. 2018, 42(9): 6719-6726.

Zhang, K., Lively, R.P., Dose, M.E., et al. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem. Commun. 2013b, 49(31): 3245-3247.

Zhang, K., Lively, R.P., Zhang, C., et al. Investigating the intrinsic ethanol/water separation capability of ZIF-8: An adsorption and diffusion study. J. Phys. Chem. C 2013c, 117(14): 7214-7225.

Zhang, T., Yuan, D., Guo, Q., et al. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green tofu. Food Bioprod. Process. 2019b, 114: 154-162.

Zhang, T., Zhang, X., Yan, X., et al. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. Chem. Eng. J. 2013d, 228: 398-404.

Zheng, B., Wang, L.L., Du, L., et al. Diffusion as a function of guest molecule length and functionalization in flexible metal-organic frameworks. Mater. Horiz. 2016, 3(4): 355-361.

Zhong, G., Liu, D., Zhang, J. The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. J. Mater. Chem. A 2018, 6(5): 1887-1899.

Zhu, H., Yang, X., Cranston, E.D., et al. Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 2016, 28(35): 7652-7657.

Zhu, H., Zhang, Q., Li, B.G., et al. Engineering elastic ZIF-8-Sponges for oil-water separation. Adv. Mater. Interfaces 2017, 4(20): 1700560.

Downloads

Download data is not yet available.

Downloads

Published

2019-09-06

Issue

Section

Articles