Hydraulic fracturing-induced seismicity characterization through coupled modeling of stress and fracture-fault systems

Authors

  • Gang Hui Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1N4, Canada
  • Zhangxin Chen* Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1N4, Canada;College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, P. R. China (Email:zhachen@ucalgary.ca)
  • Shengnan Chen Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1N4, Canada
  • Fei Gu Research Institute of Petroleum Exploration and Development CNPC, Beijing 10083, P. R. China

Keywords:

Fracturing-induced seismicity, stress and pressure pathway, fracture-fault systems

Abstract

This work summarizes our recent findings on hydraulic fracturing-induced seismicity nucleated in the Duvernay shale reservoirs within the Western Canada Sedimentary Basin. A coupled model of in-situ stress and fracture-fault systems was built to quantify four-dimensional stress and pressure changes and spatiotemporal seismicity nucleation during hydraulic fracturing. Five triggering mechanisms were successfully recognized in seismicity-frequent areas, including a direct hydraulic connection between impermeable faults and hydraulic fractures, fault slip owing to downward pressure diffusion, fault reactivation due to upward poroelastic stress perturbation, aftershocks of mainshock events, and reactivation of natural fractures surrounding the faults. This work shed light on how fracturing operations triggered the induced seismicity, providing a solid foundation for the investigation of controlling factors and mitigation strategies for hydraulic fracturing-induced seismicity.

Cited as: Hui, G., Chen, Z., Chen, S., Gu, F. Hydraulic fracturing-induced seismicity characterization through coupled modeling of stress and fracture-fault systems. Advances in Geo-Energy Research, 2022, 6(3): 269-270. https://doi.org/10.46690/ager.2022.03.11

References

Atkinson, G. M., Eaton, D. W., Ghofrani, H., et al. Hydraulic fracturing and seismicity in the western Canada sedimentary Basin. Seismological Research Letters, 2016, 87: 631-647.

Hui, G., Chen, S., Chen, Z., et al. An integrated approach to characterize hydraulic fracturing-induced seismicity in shale reservoirs. Journal of Petroleum Science and Engineering, 2021a, 196: 107624.

Hui, G., Chen, S., Chen, Z., et al. Investigation on two Mw 3.6 and Mw 4.1 earthquakes triggered by poroelastic effects of hydraulic fracturing operations near crooked lake, Alberta. Journal of Geophysical Research: Solid Earth, 2021b, 126: e2020JB020308.

Hui, G., Chen, S., Chen, Z., et al. Comprehensive characterization and mitigation of hydraulic fracturing-induced seismicity in Fox Creek, Alberta. SPE Journal, 2021c, 26(5): 2736-2747.

Hui, G., Chen, S., Gu, F., et al. Insights on controlling factors of hydraulically induced seismicity in the Duvernay East Shale Basin. Geochemistry, Geophysics, Geosystems, 2021d, 22: e2020GC009563.

Downloads

Download data is not yet available.

Downloads

Published

2022-05-30

Issue

Section

Articles