Small angle neutron scattering studies of shale oil occurrence status at nanopores

Authors

  • Tao Zhang Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington 76019, USA; National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, P. R. China
  • Qinhong Hu* National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, P. R. China; Laboratory for Marine Mineral Resource, Qingdao Marine Science and Technology Center, Qingdao 266071, P. R. China(Email:huqinhong@upc.edu.cn)
  • Qiang Tian State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
  • Yubin Ke Spallation Neutron Source Science Center, Dongguan 523803, P. R. China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Qiming Wang National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, P. R. China

Keywords:

Small angle neutron scattering, organic shale, oil occurrence status, nano-sized pores, radius of gyration

Abstract

Utilizing small angle neutron scattering techniques on organic shales, this study presents an innovative approach for characterizing the status of oil occurrence, and new insights into pore scale assessment through scattering vector-pore size relationship. The results indicate the successful identification of different shale oil occurrence status, before and after solvent extraction of residual oil for four shale samples with different contents of total organic carbon. In addition, coupled with density distribution analyses, the work demonstrates that shale samples with lower total organic carbon contents typically signify a smaller radius of gyration with better oil mobility, which indicates a greater wave oscillation with a larger pore size to be estimated from the scattering vector. This work also elucidates the notable scenarios of an increasing pore size could correspond to a decreasing radius of gyration caused by mass density redistribution. For polydisperse systems, this research illustrates the variations in pore volumetric ratio impact the scattering intensity, whereas pore scale changes affect the oscillation pattern. This novel research of analyzing mass density distribution and pore scale information in real space is also suitable for other porous media systems.

Document Type: Original article

Cited as: Zhang, T., Hu, Q., Tian, Q., Ke, Y., Wang, Q. Small angle neutron scattering studies of shale oil occurrence status at nanopores. Advances in Geo-Energy Research, 2024, 11(3): 230-240. https://doi.org/10.46690/ager.2024.03.07

References

Anovitz, L. M., Cole, D. R. Characterization and analysis of porosity and pore structures. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164.

Arrighi, V., Gagliardi, S., Dagger, A. C., et al. Conformation of cyclics and linear chain polymers in bulk by SANS. Macromolecules, 2004, 37(21): 8057-8065.

Bai, L., Liu, B., Fu, X., et al. A new method for evaluating the oil mobility based on the relationship between pore structure and state of oil. Geoscience Frontiers, 2023, 14(6): 101684.

Blach, T., Radlinski, A. P., Edwards, D. S., et al. Pore anisotropy in unconventional hydrocarbon source rocks: A small-angle neutron scattering (SANS) study on the Arthur Creek Formation, Georgina Basin, Australia. International Journal of Coal Geology, 2020, 225: 103495.

Brumberger, H. Modern Aspects of Small-Angle Scattering. New York, USA, Springer Science & Business Media, 2013. Celotta, R., Levine, J. Methods of Experimental Physics: Neutron Scattering Part A. Orlando, USA, Academic Press, 1986.

Chen, S. H. Small angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems. Annual Review of Physical Chemistry, 1986, 37(1): 351-399.

Clarkson, C. R., Jensen, J. L., Chipperfield, S. Unconventional gas reservoir evaluation: What do we have to consider? Journal of Natural Gas Science and Engineering, 2012, 8: 9-33.

Clarkson, C. R., Solano, N., Bustin, R. M., et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 2013, 103: 606-616.

Cousin, F., Gummel, J., Ung, D., et al. Polyelectrolyte-protein complexes: Structure and conformation of each specie revealed by SANS. Langmuir, 2005, 21(21): 9675-9688.

DiStefano, V. H., McFarlane, J., Anovitz, L. M., et al. Extraction of organic compounds from representative shales and the effect on porosity. Journal of Natural Gas Science and Engineering, 2016, 35: 646-660.

Ewald, P. P. X-ray diffraction by finite and imperfect crystal lattices. Proceedings of the Physical Society, 1940, 52(1): 167-174.

Fournet, G. Diffusion des rayons X par les fluides. Acta Crystallographica, 1951a, 4(4): 293-301. (in French)

Fournet, G. Étude théorique et expérimentale de la diffusion des rayons X par les ensembles denses de particules. Bulletin de Minéralogie, 1951b, 74(1): 37-172. (in French)

Fournet, G. Généralisation de la théorie cinétique des fluides de Born et Green aux ensembles de particules de plusieurs espèces différentes. Journal de Physique et Le Radium, 1951c, 12(5): 592-595. (in French)

Glatter, O., Kratky, O. Small Angle X-Ray Scattering. London, UK, Academic Press, 1982. (in French)

Gu, X., Cole, D. R., Rother, G., et al. Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study. Energy & Fuels, 2015, 29(3): 1295-1308.

Guinier, A. La diffraction des rayons X aux très petits angles: Application à l’ étude de phénomènes ultramicroscopiques. Annales de Physique, 1939, 11(12): 161-237. (in French)

Guinier, A., Fournet, G., Walker, C. B., et al. Small-angle Scattering of X-rays. New York, USA, John Wiley and Sons Inc, 1955.

Guo, X., Qin, Z., Yang, R., et al. Comparison of pore systems of clay-rich and silica-rich gas shales in the lower Silurian Longmaxi formation from the Jiaoshiba area in the eastern Sichuan Basin, China. Marine and Petroleum Geology, 2019, 101: 265-280.

Hammouda, B. Probing Nanoscale Structures-The SANS Toolbox, Gaithersburg, USA, 2012.

He, C., He, S., Zhang, T., Yang, R., Shu, Z., Han, Y. Structural characteristics and porosity estimation of organic matterhosted pores in gas shales of Jiaoshiba Block, Sichuan Basin, China. Energy Science & Engineering, 2020, 8(12): 4178-4195.

He, L., Lin, F., Li, X., et al. Interfacial sciences in unconventional petroleum production: From fundamentals to applications. Chemical Society Reviews, 2015, 44(15): 5446-5494.

Hong, K., Liu, Y., Porcar, L., et al. Structural response of polyelectrolyte dendrimer towards molecular protonation: The inconsistency revealed by SANS and NMR. Journal of Physics: Condensed Matter, 2012, 24(6): 064116.

Hu, Q., Ewing, R. P., Rowe, H. D. Low nanopore connectivity limits gas production in Barnett formation. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8073- 8087.

Hu, T., Jiang, F., Pang, X., et al. Identification and evaluation of shale oil micro-migration and its petroleum geological significance. Petroleum Exploration and Development, 2024, 51(1): 127-140.

Hu, T., Pang, X., Jiang, F., et al. Movable oil content evaluation of lacustrine organic-rich shales: Methods and a novel quantitative evaluation model. Earth-Science Reviews, 2021, 214: 103545.

Iampietro, D. J., Brasher, L. L., Kaler, E. W., et al. Direct analysis of SANS and SAXS measurements of catanionic surfactant mixtures by Fourier transformation. The Journal of Physical Chemistry B, 1998, 102(17): 3105-3113.

Ilavsky, J., Jemian, P. R. Irena: Tool suite for modeling and analysis of small-angle scattering. Journal of Applied Crystallography, 2009, 42(2): 347-353.

Jeffries, C. M., Pietras, Z., Svergun, D. I. The basics of small-angle neutron scattering (SANS for new users of structural biology). EPJ Web of Conferences, 2020, 236: 03001.

Jemian, P. R., Weertman, J. R., Long, G. G., et al. Characterization of 9Cr-1MoVNb steel by anomalous small-angle X-ray scattering. Acta Metallurgica et Materialia, 1991, 39(11): 2477-2487.

Kuila, U., Prasad, M. Specific surface area and pore size distribution in clays and shales. Geophysical Prospecting, 2013, 61: 341-362.

Li, J., Cai, J. Quantitative characterization of fluid occurrence in shale reservoirs. Advances in Geo-Energy Research, 2023a, 9(3): 146-151.

Li, R., Chen, Z., Wu, K., et al. An analytical model for water-oil two-phase flow in inorganic nanopores in shale oil reservoirs. Petroleum Science, 2021, 18(6): 1776-1787.

Li, S., Guo, Q., Pan, S., et al. Influence of intrasource micromigration of hydrocarbons on the differential enrichment of laminated type shale oil: A case study of the third submember of the seventh member of the Triassic Yanchang Formation in Ordos Basin. China Petroleum Exploration, 2023b, 28(4): 46-54. (in Chinese)

Li, Z., Lei, Z., Shen, W., et al. A comprehensive review of the oil flow mechanism and numerical simulations in shale oil reservoirs. Energies, 2023c, 16(8): 3516.

Liu, Y., Bryantsev, V. S., Diallo, M. S., et al. PAMAM dendrimers undergo pH responsive conformational changes without swelling. Journal of the American Chemical Society, 2009, 131(8): 2798-2799.

Ma, B., Hu, Q., Yang, S., et al. Pore structure typing and fractal characteristics of lacustrine shale from Kongdian Formation in East China. Journal of Natural Gas Science and Engineering, 2021, 85: 103709.

Melnichenko, Y. B., He, L., Sakurovs, R., et al. Accessibility of pores in coal to methane and carbon dioxide. Fuel, 2012, 91(1): 200-208.

Nelson, P. H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bulletin, 2009, 93(3): 329-340.

Radliński, A. P., Boreham, C. J., Lindner, P., et al. Small angle neutron scattering signature of oil generation in artificially and naturally matured hydrocarbon source rocks. Organic Geochemistry, 2000, 31(1): 1-14.

Radliński, A. P., Radlińska, E. Z., Agamalian, M., et al. Fractal geometry of rocks. Physical Review Letters, 1999, 82(15): 3078.

Rayleigh, L. On the diffraction of light by spheres of small relative index. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1914, 90(617): 219-225.

Ross, D. J., Bustin, R. M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 2009, 26(6): 916-927.

Ruppert, L. F., Sakurovs, R., Blach, T. P., et al. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water. Energy & Fuels, 2013, 27(2): 772-779.

Saif, T., Lin, Q., Singh, K., et al. Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. Geophysical Research Letters, 2016, 43(13): 6799-6807.

Sakurovs, R., He, L., Melnichenko, Y. B., et al. Pore size distribution and accessible pore size distribution in bituminous coals. International Journal of Coal Geology, 2012, 100: 51-64.

Shawaqfeh, A., Al-Harahsheh, A. Solvation of Jordanian oil shale using different organic solvents by continuous contact mixing. Energy Sources, 2004, 26(14): 1321-1330.

Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering. Cambridge, UK, Courier Corporation, 1996.

Tian, Q., Sun, J., Henderson, M. J., et al. Quantitative analysis of the structural relaxation of silica-PEO shake gel by X-ray and light scattering. Polymer Testing, 2021, 104: 107391.

Wang, S., Javadpour, F., Feng, Q. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel, 2016, 171: 74-86.

Xu, H. Probing nanopore structure and confined fluid behavior in shale matrix: A review on small-angle neutron scattering studies. International Journal of Coal Geology, 2020, 217: 103325.

Xu, Y., Lun, Z., Pan, Z., et al. Occurrence space and state of shale oil: A review. Journal of Petroleum Science and Engineering, 2022, 211: 110183.

Yuste, S. B., Santos, A. Radial distribution function for hard spheres. Physical Review A, 1991, 43(10): 5418.

Zernike, F., Prins, J. A. Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molek ulanordnung. Zeitschrift für Physik A Hadrons and Nuclei, 1927, 41(2): 184-194. (in French)

Zhang, T., Hu, Q., Ghanbarian, B., et al. A pulse-decay method for low (matrix) permeability analyses of granular rock media. Hydrology and Earth System Sciences, 2023, 27(24): 4453-4465.

Zhang, W., Feng, Q., Wang, S., et al. Oil diffusion in shale nanopores: Insight of molecular dynamics simulation. Journal of Molecular Liquids, 2019, 290: 111183.

Zhang, Y., Hu, Q., Barber, T. J., et al. Quantifying fluidwettable effective pore space in the Utica and Bakken oil shale formations. Geophysical Research Letters, 2020, 47(14): e2020GL087896.

Downloads

Download data is not yet available.

Downloads

Additional Files

Published

2024-03-17

Issue

Section

Articles