Determining CO2 storage efficiency within a saline aquifer using reduced complexity models
Keywords:
Carbon capture and storage, storage capacity, vertical equilibrium models, trap analysis, Malay BasinAbstract
Carbon capture and storage is vital for reducing greenhouse gas emissions and mitigating climate change. Most projects involve the permanent geological storage of CO2 within deep sedimentary rock formations, but accurately constraining storage capacity usually involves detailed and computationally demanding reservoir modeling and simulation. Efficiency factors can also be used but these often lead to capacity overestimations. To address this, a workflow is proposed harnessing various existing, reduced complexity models that account for the surface topography and dynamic fluid behavior in a computationally efficient manner. This workflow was tested in an area of the Malay Basin mapped from three-dimensional seismic data but with illustrative reservoir parameters. A static analysis was first undertaken using algorithms within MRST-co2lab. Structural traps, spill paths and spill regions were identified using the reservoir topography. This provided initial indications into optimal well placement and led to refinement of the total capacity of the area into the capacity available within structural traps. This was followed with a dynamic analysis, also within MRST-co2lab, using computationally efficient Vertical Equilibrium models. Hundreds of simulations were undertaken and the optimal well placement was determined based on the maximum storage efficiency achieved. The results indicated that the amount that can be contained within this area is 15 times less than equivalent predictions using static storage efficiency factors. The advantage of such a light approach is that sensitivity and uncertainty analysis can be carried out at speed, before targeting certain parameters/areas for more detailed study.
Document Type: Original article
Cite as: de Jonge-Anderson, I., Ramachandran, H., Nicholson, U., Geiger, S., Widyanita, A., Doster, F. Determining CO2 storage efficiency within a saline aquifer using reduced complexity models. Advances in Geo-Energy Research, 2024, 13(1): 22-31. https://doi.org/10.46690/ager.2024.07.04
ReferencesAndersen, O., Lie, K. A., Nilsen, H. M. An Open-Source Toolchain for Simulation and Optimization of Aquifer-Wide CO2 Storage. Energy Procedia, 2016, 86: 324-333.
Asia-Pacific Economic Cooperation (APEC). CO2 storage prospectivity of selected sedimentary basins in the region of China and South East Asia, 2005.
Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 2015, 40: 188-202.
Bachu, S., Bonijoly, D., Bradshaw, J., et al. CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
Baker, R. O., Yarranton, H. W., Jensen, J. L. Special core analysis-Rock-fluid interactions, in Practical Reservoir Engineering and Characterization, edited by R. O. Baker, H. W. Yarranton and J. L. Jensen, Elsevier, Amsterdam, pp. 239-295, 2015.
Batzle, M., Wang, Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11): 1396-1408.
Becker, B., Guo, B., Buntic, I., et al. An adaptive hybrid vertical equilibrium/full-dimensional model for compositional multiphase flow. Water Resources Research, 2022, 58(1): e2021WR030990.
Bentham, M., Mallows, T., Lowndes, J., et al. CO2 STORage evaluation database (CO2 Stored). The UK’s online storage atlas. Energy Procedia, 2014, 63: 5103-5113.
Birkholzer, J. T., Oldenburg, C. M., Zhou, Q. CO2 migration and pressure evolution in deep saline aquifers. International Journal of Greenhouse Gas Control, 2015, 40: 203-220.
Blondes, M. S., Brennan, S. T., Merrill, M. D., et al. National assessment of geologic carbon dioxide storage resources-methodology implementation. US Geological Survey Open-File Report, 2013.
Brennan, S. T. The US Geological Survey carbon dioxide storage efficiency value methodology: Results and observations. Energy Procedia, 2014, 63: 5123-5129.
Carman, C. P. Fluid flow through a granular bed. Transactions of the Institution of Chemical Engineers, 1937, 15: 150-156.
Court, B., Bandilla, K. W., Celia, M. A., et al. Applicability of vertical-equilibrium and sharp-interface assumptions in CO2 sequestration modeling. International Journal of Greenhouse Gas Control, 2012, 10: 134-147.
de Jonge-Anderson, I., Widyanita, A., Busch, A., et al. New Insights into the structural and stratigraphic evolution of the Malay Basin using 3D seismic data: Implications for regional carbon capture and storage potential. EarthArXiv Preprint, 2024.
De Silva, G. P. D., Ranjith, P. G., Perera, M. S. A. Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel, 2015, 155: 128-143.
Fenghour, A., Wakeham, W. A., Vesovic, V. The viscosity of carbon dioxide. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-44.
Gasda, S. E., Nordbotten, J. M., Celia, M. A. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Computational Geosciences, 2009, 13(4): 469-481.
Gasda, S. E., Nordbotten, J. M., Celia, M. A. Vertically averaged approaches for CO2 migration with solubility trapping. Water Resources Research, 2011, 47(5): e2010WR009075.
Goodman, A., Hakala, A., Bromhal, G., et al. US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965.
Gorecki, C. D., Sorensen, J. A., Bremer, J. M., et al. Development of storage coefficients for determining the effective CO2 storage resource in deep saline formations. Paper SPE 126444 Presented at SPE International Conference on CO2 Capture, Storage, and Utilization, San Diego, California, USA, 2-4 November, 2009.
Hasbollah, D. Z. A., Junin, R., Taib, A. M., et al. Basin Evaluation of CO2 Geological Storage Potential in Malay Basin, Malaysia, in Geotechnics for Sustainable Infrastructure Development, edited by P. Duc Long and N. T. Dung, Springer, Singapore, pp. 1405-1410, 2020.
Intergovernmental Panel on Climate Change (IPCC). Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. 2023.
Jackson, W. A., Hampson, G. J., Jacquemyn, C., et al. A screening assessment of the impact of sedimentological heterogeneity on CO2 migration and stratigraphic-baffling potential: Johansen and Cook formations, Northern Lights project, offshore Norway. International Journal of Greenhouse Gas Control, 2022, 120: 103762.
Jin, Z. L., Durlofsky, L. J. Reduced-order modeling of CO2 storage operations. International Journal of Greenhouse Gas Control, 2018, 68: 49-67.
Juanes, R., MacMinn, C. W., Szulczewski, M. L. The Footprint of the CO2 Plume during Carbon Dioxide Storage in Saline Aquifers: Storage Efficiency for Capillary Trapping at the Basin Scale. Transport in Porous Media, 2010, 82(1): 19-30.
Kuttan, K., Stockbridge, C. P., Crocker, H., et al. Log interpretation in the Malay Basin. Paper SPWLA-1980-II Presented at SPWLA 21st Annual Logging Symposium, Lafayette, Louisiana, 8-11 July, 1980.
Lie, K. A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge, UK, University Press, 2019.
Lie, K. A., Nilsen, H. M., Andersen, O., et al. A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. Computational Geosciences, 2016, 20(3): 607-622.
Madon, M., Jong, J. Geothermal gradient and heat flow maps of offshore malaysia: Some updates and observations. Bulletin of the Geological Society of Malaysia, 2021, 71: 159-183.
Mathias, S. A., Gluyas, J. G., Goldthorpe, W. H., et al. Impact of Maximum Allowable Cost on CO2 Storage Capacity in Saline Formations. Environmental Science & Technology, 2015, 49(22): 13510-13518.
Møyner, O., Nilsen, H. M. Multiresolution coupled vertical equilibrium model for fast flexible simulation of CO2 storage. Computational Geosciences, 2019, 23(1): 1-20.
Nilsen, H. M., Herrera, P. A., Ashraf, M., et al. Fieldcase simulation of CO2-plume migration using vertical-equilibrium models. Energy Procedia, 2011, 4: 3801-3808.
Nilsen, H. M., Krogstad, S., Andersen, O., et al. Using sensitivities and vertical-equilibrium models for parameter estimation of CO2 injection models with application to sleipner data. Energy Procedia, 2017, 114: 3476-3495.
Nilsen, H. M., Lie, K. A., Andersen, O. Fully-implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Computational Geosciences, 2016, 20: 49-67.
Nilsen, H. M., Lie, K. A., Møyner, O., et al. Spill-point analysis and structural trapping capacity in saline aquifers using MRST-co2lab. Computers & Geosciences, 2015, 75: 33-43.
Nordbotten, J. M., Celia, M. A. An improved analytical solution for interface upconing around a well. Water Resources Research, 2006, 42(8): e2005WR004738.
Nordbotten, J. M., Celia, M. A. Geological Storage of CO2: Modeling Approaches for Large-scale Simulation. New Jersey, USA, John Wiley & Sons, 2011.
Nordbotten, J. M., Celia, M. A., Bachu, S. Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 2005, 58(3): 339-360.
Nordbotten, J. M., Kavetski, D., Celia, M. A., et al. Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environmental Science & Technology, 2009, 43(3): 743-749.
Okwen, R., Stewart, M. T., Cunningham, J. A. Analytical solution for estimating storage efficiency of geologic sequestration of CO2. International Journal of Greenhouse Gas Control, 2010, 4(1): 102-107.
Okwen, R., Yang, F., Frailey, S. Effect of geologic depositional environment on CO2 storage efficiency. Energy Procedia, 2014, 63: 5247-5257.
Petrovskyy, D., Jacquemyn, C., Geiger, S., et al. Rapid flow diagnostics for prototyping of reservoir concepts and models for subsurface CO2 storage. International Journal of Greenhouse Gas Control, 2023, 124: 103855.
Pooladi-Darvish, M., Moghdam, S., Xu, D. Multiwell injectivity for storage of CO2 in aquifers. Energy Procedia, 2011, 4: 4252-4259.
Postma, T. J. W., Bandilla, K. W., Peters, C. A., et al. Field-scale modeling of CO2 mineral trapping in reactive rocks: A vertically integrated approach. Water Resources Research, 2022, 58(1): e2021WR030626.
Span, R., Wagner, W. Equations of state for technical applications. I. Simultaneously optimized functional forms for nonpolar and polar fluids. International Journal of Thermophysics, 2003, 24(1): 1-39.
Szulczewski, M. L., MacMinn, C. W., Herzog, H. J., et al. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proceedings of the National Academy of Sciences, 2012, 109(14): 5185-5189.
Szulczewski, M. L., MacMinn, C. W., Juanes, R. Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers. International Journal of Greenhouse Gas Control, 2014, 23: 113-118.
Thibeau, S., Mucha, V. Have we overestimated saline aquifer CO2 storage capacities? Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2011, 66(1): 81-92.
Vangkilde-Pedersen, T., Anthonsen, K. L., Smith, N., et al. Assessing European capacity for geological storage of carbon dioxide-the EU GeoCapacity project. Energy Procedia, 2009, 1(1): 2663-2670.
Zhou, Q., Birkholzer, J. T., Tsang, C. F., et al. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. International Journal of Greenhouse Gas Control, 2008, 2(4): 626-639.