Three-dimensional simulation of geologic carbon dioxide sequestration using MRST

Authors

  • Lluís Saló-Salgado Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge 02139, United States; Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge 02139, United States
  • Olav Møyner Mathematics and Cybernetics, SINTEF Digital, Oslo 0373, Norway
  • Knut-Andreas Lie Mathematics and Cybernetics, SINTEF Digital, Oslo 0373, Norway
  • Ruben Juanes* Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge 02139, United States; Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge 02139, United States (Email:juanes@mit.edu)

Keywords:

Geologic carbon storage, MRST, open-source implementation, black-oil, relative permeability hysteresis

Abstract

Physics-based computational modeling of subsurface CO2 migration constitutes the primary tool to assess geologic carbon storage. Such models are often required to plan injection operations and assess hazards such as CO2 migration into units above the storage formation. Here, we present three tools developed to increase fidelity of black-oil type geologic carbon storage models in the open-source MATLAB Reservoir Simulation Toolbox. These tools, which are published in the co2lab-mit module, include functionality to: (1) Calculate and output PVT properties of miscible brine and CO2 as a function of pressure, temperature, and salinity; (2) account for relative permeability hysteresis, necessary to model residual trapping; and (3) model CO2 transport due to concentration gradients (molecular diffusion). We validate our implementation with published results including experimental observations, present MRST examples, and conclude with some remarks on applicability, limitations, and potential extensions. Source code and examples are provided.

Document Type: Original article

Cited as: Saló-Salgado, L., Møyner, O., Lie, K. -A, Juanes, R. Three-dimensional simulation of geologic carbon dioxide sequestration using MRST. Advances in Geo-Energy Research, 2024, 14(1): 34-48. https://doi.org/10.46690/ager.2024.10.06

References

Aissaoui, A. Etude théorique et expérimentale de l’hystérésis des pressions capillaires et des perméabilités relatives en vue du stockage souterrain de gaz. Ecole des Mines de Paris, Paris, 1983. (in French)

Akbarabadi, M., Piri, M. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions. Advances in Water Resources, 2013, 52: 190-206.

Al-Rawajfeh, A. E. Modelling and simulation of CO2 release in multiple effect distillers for seawater desalination. Halle (Saale), Martin Luther University Halle-Wittenberg, 2004.

Awad, M. M., Espinoza, D. N. Mudrock wettability at pressure and temperature conditions for CO2 geological storage. International Journal of Greenhouse Gas Control, 2024, 135: 104160.

Aziz, K., Settari, A. Petroleum Reservoir Simulation. London, UK, Applied Science Publishers, 1979.

Batzle, M., Wang, Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11): 1396-1408.

Bear, J. Dynamics of Fluids in Porous Media. New York, USA, Dover, 1972.

Bear, J. Modeling Phenomena of Flow and Transport in Porous Media. Cham, Switzerland, Springer, 2018.

Benson, S., Cook, P., Anderson, J., et al. Underground geological storage, in IPCC Special Report on Carbon Dioxide Capture and Storage, edited by B. Metz, O. Davidson, H. de Coninck, et al. Cambridge University Press, Cambridge, pp. 196-276, 2005.

Beygi, M. R., Delshad, M., Pudugramam, V. S., et al. Novel three-phase compositional relative permeability and three-phase hysteresis models. SPE Journal, 2015, 20(1): 21-34.

Blunt M. J. Multiphase Flow in Permeable Media: A Porescale Perspective. Cambridge, UK, Cambridge University Press, 2017.

Boait, F. C., White, N. J., Bickle, M. J., et al. Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. Journal of Geophysical Research: Solid Earth, 2012, 117(B3): B03309.

Carlson, F. M. Simulation of relative permeability hysteresis to the nonwetting phase. Paper SPE 10157 Presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 4-7 October, 1981.

Davidson, T. A. A simple and accurate method for calculating viscosity of gaseous mixtures. Washington, Bureau of Mines, US Department of the Interior, 1993.

Duan, Z., Sun, S. An improved model calculating CO2 sol-ubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 2003, 193(3-4): 257-271.

Eikehaug, K., Haugen, M., Folkvord, O., et al. Engineering meter-scale porous media flow experiments for quantitative studies of geological carbon sequestration. Transport in Porous Media, 2024, 151: 1143-1167.

Fenghour, A., Wakeham, W. A., Vesovic, V. The viscosity of carbon dioxide. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-44.

Fernø, M. A., Haugen, M., Eikehaug, K., et al. Room-scale CO2 injections in a physical reservoir model with faults. Transport in Porous Media, 2024, 151: 913-937.

Fick, A. V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1855, 10(63): 30-39.

Flemisch, B., Nordbotten, J. M., Fernø, M., et al. The FluidFlower validation benchmark study for the storage of CO2. Transport in Porous Media, 2024, 151: 865-912.

Garcia, J. E. Density of aqueous solutions of CO2. Berkeley, Lawrence Berkeley National Laboratory, 2001.

Gasda, S. E., Nordbotten, J. M., Celia, M. A. Vertically averaged approaches for CO2 migration with solubility trapping. Water Resources Research, 2011, 47(5): W05528.

Hassanzadeh, H., Pooladi-Darvish, M., Elsharkawy, A. M., et al. Predicting PVT data for CO2-brine mixtures for black-oil simulation of CO2 geological storage. International Journal of Greenhouse Gas Control, 2008, 2(1): 65-77.

Haugen, M., Saló-Salgado, L., Eikehaug, K., et al. Physical variability in meter-scale laboratory CO2 injections in faulted geometries. Transport in Porous Media, 2024, 151: 1169-1197.

Hebach, A., Oberhof, A., Dahmen, N. Density of water + carbon dioxide at elevated pressures: measurements and correlation. Journal of Chemical & Engineering Data, 2004, 49(4): 950-953.

Hesse, M. A., Woods, A. W. Buoyant dispersal of CO2 during geological storage. Geophysical Research Letters, 2010, 37(1): L01403.

Hidalgo, J. J., Carrera, J. Effect of dispersion on the onset of convection during CO2 sequestration. Journal of Fluid Mechanics, 2009, 640: 441-452.

Islam, A. W., Carlson, E. S. Viscosity models and effects of dissolved CO2. Energy & Fuels, 2012, 26(8): 5330-5336.

Jadhunandan, P. P., Morrow, N. R. Effect of wettability on waterflood recovery for crude-oil/brine/rock systems. SPE Reservoir Engineering, 1995, 10(1): 40-46.

Jia, W., McPherson, B., Pan, F., et al. Impact of three-phase relative permeability and hysteresis models on forecasts of storage associated with CO2-EOR. Water Resources Research, 2018, 54(2): 1109-1126.

Juanes, R., Spiteri, E. J., Orr Jr F. M., et al. Impact of relative permeability hysteresis on geological CO2 storage. Water Resources Research, 2006, 42(12): W12418.

Killough, J. E. Reservoir simulation with history-dependent saturation functions. Society of Petroleum Engineers Journal, 1976, 16(1): 37-48.

King, M. B., Mubarak, A., Kim, J. D., et al. The mutual solubilities of water with supercritical and liquid carbon dioxides. The Journal of Supercritical Fluids, 1992, 5(4): 296-302.

Krevor, S., De Coninck, H., Gasda, S. E., et al. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nature Reviews Earth & Environment, 2023, 4: 102-118.

Krevor, S. C. M., Pini, R., Zuo, L., et al. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resources Research, 2012, 48(2): W02532.

Land, C. S. Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Society of Petroleum Engineers Journal, 1968, 8(2): 149-156.

Landa-Marbán, D., Tveit, S., Kumar, K., et al. Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, 2021, 106: 103256.

Liang, Y., Wen, B., Hesse, M. A., et al. Effect of dispersion on solutal convection in porous media. Geophysical Research Letters, 2018, 45(18): 9690-9698.

Lie, K. -A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge, UK, Cambridge University Press, 2019.

Lie, K. -A., Møyner, O. Advanced Modeling with the MATLAB Reservoir Simulation Toolbox. Cambridge, UK, Cambridge University Press, 2021.

Muskat, M. Physical Principles of Oil Production. New York, USA, McGraw-Hill Book Co, 1949.

Møyner, O., Andersen, O., Nilsen, H. M. Multi-model hybrid compositional simulator with application to segregated flow. Computational Geosciences, 2020, 24(2): 775-787.

Møyner, O., Nilsen, H. M. Multiresolution coupled vertical equilibrium model for fast flexible simulation of CO2 storage. Computational Geosciences, 2019, 23(1): 1-20.

Naar, J., Wygal, R. J., Henderson, J. H. Imbibition relative permeability in unconsolidated porous media. Society of Petroleum Engineers Journal, 1962, 2(1): 13-17.

Nazari, F., Nafchi, S. A., Asbaghi, E. V., et al. Impact of capillary pressure hysteresis and injection-withdrawal schemes on performance of underground hydrogen storage. International Journal of Hydrogen Energy, 2024, 50: 1263-1280.

Neufeld, J. A., Hesse, M. A., Riaz, A., et al. Convective dissolution of carbon dioxide in saline aquifers. Geophysical research letters, 2010, 37(22): L22404.

Nilsen, H. M., Lie, K. -A., Andersen, O. Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity in large-scale aquifer systems. Computational Geosciences, 2016, 20: 93-113.

Nilsen, H. M., Lie, K. -A., Møyner, O., et al. Spill-point analysis and structural trapping capacity in saline aquifers using MRST-co2lab. Computers & Geosciences, 2015, 75: 33-43.

Nordbotten, J. M., Ferno, M. A., Flemisch, B., et al. The 11th Society of Petroleum Engineers Comparative Solution Project: Problem Definition. SPE Journal, 2024, 29(5): 2507-2524.

Pentland, C. H., Itsekiri, E., Al Mansoori, S. K., et al. Measurement of nonwetting-phase trapping in sandpacks. SPE Journal, 2010, 15(2): 274-281.

Redlich, O., Kwong, J. N. S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chemical Reviews, 1949, 44(1): 233-244.

Riaz, A., Hesse, M., Tchelepi, H. A., et al. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 2006, 548: 87-111.

Rowe Jr, A. M., Chou, J. C. S. Pressure-volume-temperature-concentration relation of aqueous sodium chloride solutions. Journal of Chemical and Engineering Data, 1970, 15(1): 61-66.

Saadatpoor, E., Bryant, S. L., Sepehrnoori, K. New trapping mechanism in carbon sequestration. Transport in Porous Media, 2010, 82(1): 3-17.

Saló-Salgado, L., Haugen, M., Eikehaug, K., et al. Direct comparison of numerical simulations and experiments of CO2 injection and migration in geologic media: Value of local data and forecasting capability. Transport in Porous Media, 2024, 151: 1199-1240.

Silva, J. A., Saló-Salgado, L., Patterson, J., et al. Assessing the viability of CO2 storage in offshore formations of the Gulf of Mexico at a scale relevant for climate change mitigation. International Journal of Greenhouse Gas Control, 2023, 126: 103884.

SLB. ECLIPSE Reference Manual. Houston, USA, Schlumberger Ltd., 2014a. SLB. ECLIPSE Technical Description. Houston, USA, Schlumberger Ltd., 2014b.

Spiteri, E. J., Juanes, R. Impact of relative permeability hysteresis on the numerical simulation of WAG injection. Journal of Petroleum Science and Engineering, 2006, 50(2): 115-139.

Spiteri, E. J., Juanes, R., Blunt, M. J., et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE Journal, 2008, 13(3): 277- 288.

Spycher, N., Pruess, K. CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12-100 ℃ and up to 600 bar. Geochimica et Cosmochimica Acta, 2005, 69(13): 3309-3320.

Spycher, N., Pruess, K., Ennis-King, J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar. Geochimica et Cosmochimica Acta, 2003, 67(16): 3015-3031.

Stone, H. L. Probability model for estimating three-phase relative permeability. Journal of Petroleum Technology, 1970, 22(2): 214-218.

Stone, H. L. Estimation of three-phase relative permeability and residual oil data. Journal of Canadian Petroleum Technology, 1973, 12(4): 53-61.

Szulczewski, M. L., MacMinn, C. W., Herzog, H. J., et al. Lifetime of carbon capture and storage as a climatechange mitigation technology. Proceedings of the National Academy of Sciences, 2012, 109(14): 5185-5189.

Wang, Y., Fernàndez-Garcia, D., Saaltink, M. W. Modeling reactive multi-component multi-phase flow for Geological Carbon Sequestration (GCS) with Matlab. Computers & Geosciences, 2023, 172: 105300.

Xiong, W., Zhang, L., Zhao, Y., et al. Compositional simulation for carbon storage in porous media using an electrolyte association equation of state. SPE Journal, 2024, 29(6): 3314-3336.

 

Downloads

Download data is not yet available.

Downloads

Additional Files

Published

2024-08-20

Issue

Section

Articles