Nanostructure and evolution of thin shells in brittle-ductile shear zones
Abstract
The brittle-ductile deformation of rocks forms the foundation of structural geology, engineering geology and petroleum geology. Although brittle-ductile deformation structures and their evolutionary processes have been extensively investigated at macroscopic and microscopic scales, a reliable discrimination model remains elusive at the nanoscale. To establish distinctive nanostructural models for brittle-ductile deformations, this study combines the scanning electron microscopy analysis of thin shells within brittle-ductile shear zones with high-temperature and high-pressure experimental simulations. The brittle and ductile thin shell models exhibit markedly different structures. The models reveal a tripartite architecture in brittle thin shells: a vice-surface on top layer; a middle layer comprising individual spherical nanoparticles, nanoparticle aggregates and multi-aggregate nanoparticles; a basal substrate layer. In contrast, the ductile thin shell does not have a vice-surface on top layer or a basal substrate layer and its nanostructures are characterized by fibrous, chain-ball and schistose nanoparticles with their associated aggregate structures. Applying the space-for-time assumption, the evolution of thin shells in the shear zone was reconstructed, demonstrating that the brittle-ductile-viscous transition drives nanoparticle transformations through granularization - alienation - reuniting - reproduction sequences. This work extends the discrimination model of brittle-ductile deformation from the microscopic scale to the nanoscale.
Document Type: Original article
Cited as: Cai, Z., Liu, Y., Li, J., Sun, Y. Nanostructure and evolution of thin shells in brittle-ductile shear zones. Advances in Geo-Energy Research, 2025, 17(1): 56-67. https://doi.org/10.46690/ager.2025.07.05
Keywords:
Nanostructure, evolution, thin shell, brittle shear zone, ductile shear zoneReferences
Anders, M. H., Wiltschko, D. V. Microfracturing, paleostress and the growth of faults. Journal of Structural Geology, 1994, 16(6): 795-815.
Buergmann, R., Pollard, D. D. Influence of the state of stress on the brittle-ductile transition in granitic rock: Evidence from fault steps in the Sierra Nevada, California. Geology, 1992, 20(7): 645-648.
Boffadossi, M. A., Coniglio, J. E., Maffini, M. N., et al. Synkinematic interplay between felsic dykes and host rock mylonitization: How magmatism assists the formation of ductile narrow shear zones in the Sierra Chica de Córdoba, Argentina. Journal of South American Earth Sciences, 2021, 106: 103063.
Braun, O. M., Naumovets, A. G. Nanotribology: Microscopic mechanisms of friction. Surface Science Reports, 2006, 60(6-7): 79-158.
Cai, Z., Lu, L., Huang, Q., et al. Formation conditions for nanoparticles in a fault zone and their role in fault sliding. Tectonics, 2019, 38(1): 159-175.
Carreras, J. Zooming on Northern Cap de Creus shear zones. Journal of Structural Geology, 2001, 23(9): 1457-1486.
Cheng, S., Liu, Z., Wang, Q., et al. SHRIMP zircon U-Pb dating and Hf isotope analyses of the Muniushan Monzogranite, Guocheng, Jiaobei Terrane, China: implications for the tectonic evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 2017, 301: 36-48.
Chester, F. M., Evans, J. P., Biegel, R. L. Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research, 1993, 98(B1): 771-786.
Collettini, C., Niemeijer, A., Viti, C., et al. Fault zone fabric and fault weakness. Nature, 2009, 462: 907-910.
Dean, G. D., Tomlins, P. E., Read, B. E. A model for nonlinear creep and physical aging in poly (viny chloride). Polymer Engineering and Science, 1995, 35(16): 1282-1289.
De Paola, N. Nano-powder coating can make fault surfaces smooth and shiny: Implications for fault mechanics? Geology, 2013, 41(6): 719-720.
De Paola, N., Hirose, T., Mitchell, T., et al. Fault lubrication and earthquake propagation in thermally unstable rocks. Geology, 2011, 39(1): 35-38.
De Paola, N., Holdsworth, R. E., Viti, C., et al. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? Earth and Planetary Science Letters, 2015, 431: 48-58.
Dill, H. G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 2010, 100(1-4): 1- 420.
Di Toro, G., Hirose, T., Nielsen, S., et al. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science, 2006, 311: 647-649.
Durham, W. B., Weidner, D. J., Karato, S. I., et al. New developments in deformation experiments at high pressure. Reviews in Mineralogy and Geochemistry, 2002, 51(1): 21-49.
Fondriest, M., Smith, S. A. F., Di Toro, G., et al. Fault zone structure and seismic slip localization in dolostones: An example from the Southern Alps, Italy. Journal of Structural Geology, 2012, 45: 52-67.
Fusseis, F., Handy, M. R. Micromechanisms of shear zone propagation at the brittle-viscous transition. Journal of Structural Geology, 2008, 30(10): 1242-1253.
Fusseis, F., Handy, M. R., Schrank, C., et al. Networking of shear zones at the brittle-to-viscous transition (Cap de Creus, NE Spain). Journal of Structural Geology, 2006, 28(7): 1228-1243.
Han, R., Hirose, T., Shimamoto, T., et al. Granular nanoparticles lubricate faults during seismic slip. Geology, 2011, 39(6): 599-602.
Han, R., Shimamoto, T., Hirose, T., et al. Ultra-low friction of carbonate faults caused by thermal decomposition. Science, 2007, 316: 878-881.
Hirose, T., Bystricky, M., Kunze, K., et al. Semi-brittle flow during dehydration of lizardite-chrysotile serpentinite deformed in torsion: Implications for the rheology of oceanic lithosphere. Earth and Planetary Science Letters, 2006, 249(3-4): 484-493.
Holdsworth, R. E. Weak faults: Rotten cores. Science, 2004, 303: 181-182.
Hucka, V., Das, B. Brittleness determination of rocks by different methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392.
Hull, J. Thickness-displacement relationships for deformation zones. Journal of Structural Geology, 1988, 10: 244-267.
Ingles, J. Terminations of ductile shear zones. Tectonophysics, 1986, 127(1-2): 87-95.
Ju, Y., Li, X., Ju, L., et al. Nanoparticles in the Earth surface systems and their effects on the environment and resource. Gondwana Research, 2022, 110: 370-392.
Ju, Y., Wang, G., Jiang, B. Microstructure analysis of the coal bed ductile shearing zone in the shallow level brittle deformation domain. Science in China (Series D), 2003, 3(7): 626-635 (in Chinese).
Keulen, N., Heilbronner, R., Stünitz, H., et al. Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology, 2007, 29(8): 1282-1300.
Krása, D., Wilkinson, C.D., Gadegaard, N., et al. Nanofabrication of two-dimensional arrays of magnetite particles for fundamental rock magnetic studies. Journal of Geophysical Research: Solid Earth, 2009, 114(B2): B02104.
Li, J., Cai, Z., Huang, Q., et al. Nanoparticles observed in a shear fracture of dolomite and a probable formation mechanism. Journal of Nanoscience and Nanotechnology, 2021, 21(1): 555-566.
Mair, K., Abe, S. 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization. Earth and Planetary Science Letters, 2008, 274(1-2): 72-81.
Mamtani, M. A., Wenzel, O., Kontny, A., et al. “In-plane” sitespecific FIB lamella extraction from deformed magnetite and the investigation of low angle grain boundaries under TEM. Journal of Structural Geology, 2023, 174: 104937.
McLaren, A. C., Pryer, L. L. Microstructural investigation of the interaction and interdependence of cataclastic and plastic mechanisms in feldspar crystals deformed in the semi-brittle field. Tectonophysics, 2001, 335(1-2): 1-15.
Means, W. D. Shear zones of types I and II and their significance for the reconstruction of rock history. Geological Society of America Bulletin, 1984, 16(1): 50.
Miranda, T. S., Neves, S. P., Celestino, M. A. L., et al. Structural evolution of the Cruzeiro do Nordeste shear zone (NE Brazil): Brasiliano-Pan-African ductile-to-brittle transition and Cretaceous brittle reactivation. Journal of Structural Geology, 2020, 141: 104203.
Mitra, G. Ductile deformation zones in blue ridge basement rocks and estimation of finite strains. Geological Society of America Bulletin, 1979, 90(10): 935-951.
Obert, L., Duvall, W. Rock Mechanics and the Design of Structures in Rock. New York, USA, Wiley, 1967.
Paterson, M. S. A high-pressure, high-temperature apparatus for rock deformation. International Journal of Rock Mechanics and Mining Sciences, 1970, 7(5): 517-526.
Ramsey, J. G. Folding and Fracturing of Rock. New York, USA, McGraw-Hill Book Company, 1968.
Sammis, C. G., Ben-Zion, Y. Mechanics of grain-size reduction in fault zones. Journal of Geophysical Research: Solid Earth, 2008, 113(B2): B02306.
Schleicher, A. M., van der Pluijm, B., Warr, L. N. Nanocoating of clay and creep of the San Andreas Fault at Parkfield, California. Geology, 2010, 38(7): 667-670.
Siman-Tov, S., Aharonov, E., Sagy, A., et al. Nanograins form carbonate fault mirrors. Geology, 2013, 41(6): 703-706.
Smith, S. A. F., Billi, A., Di Toro, G., et al. Principal slip zones in limestone: Microstructural characterization and implications for the seismic cycle (Tre Monti Fault, Central Apennines, Italy). Pure and Applied Geophysics, 2011, 168(12): 2365-2393.
Stewart, M., Holdsworth, R. E., Strachan, R. A. Deformation processes and weakening mechanisms within the frictional-viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland. Journal of Structural Geology, 2000, 22(5): 543-560.
Sun, S., Dong, Y. High temperature ductile deformation, lithological and geochemical differentiation along the Shagou shear zone, Qinling Orogen, China. Journal of Structural Geology, 2023, 167: 104791.
Sun, Y., Jiang, S., Zhou, W., et al. Nano-coating texture on the shear slip surface in rocky materials. Advanced Materials Research, 2013, 669: 108-114.
Sun, Y., Shen, X., Suzuki, T. Study on the ductile deformation domain of the simple shear in rocks - Taking brittle faults of the covering strata in the southern Jiangsu area as an example. Science in China (Series B), 1992, 35: 1512- 1520.
Sun, Y., Shu, L., Lu, X., et al. Recent progress in studies on the nano-sized particle layer in rock shear planes. Progress in Natural Science, 2008a, 18(4): 367-373.
Sun, Y., Shu, L., Lu, X., et al. A comparative study of natural and experimental nano-sized grinding grain textures in rocks. Chinese Science Bulletin, 2008b, 53: 1217-1221.
Tian, P., He, C. Velocity weakening of simulated augite gouge at hydrothermal conditions: Implications for frictional slip of pyroxene-bearing mafic lower crust. Journal of Geophysical Research: Solid Earth, 2019, 124(7): 6428- 6451.
Verberne, B. A., Plümper, O., Matthijs de Winter, D. A., et al. Superplastic nanofibrous slip zones control seismogenic fault friction. Science, 2014, 346: 1342-1344.
Viti, C., Collettini, C. Growth and deformation mechanisms of talc along a natural fault: A micro/nanostructural investigation. Contributions to Mineralogy and Petrology, 2009, 158(4): 529-542.
Viti, C., Hirose, T. Thermal decomposition of serpentine during coseismic faulting: nanostructures and mineral reactions. Journal of Structural Geology, 2010, 32(10): 1476-1484.
Watterson, J. Fault dimensions, displacement and growth. Pure and Applied Geophysics, 1986, 124(1): 365-373.
Wibberley, C. A. J., Shimamoto, T. Internal structure and permeability of major strike-slip fault zones: The median tectonic line in Mie Prefecture, southwest Japan. Journal of Structural Geology, 2003, 25(1): 59-78.
Zhan, L., Cao, S., Dong, Y., et al. Strain localized deformation variation of a small-scale ductile shear zone. Journal of Earth Science, 2023, 34(2): 409-430.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.