Machine learning potential insights into mechanical response and heat transfer in CO₂ hydrate
Abstract
Accurate prediction of the mechanical and thermal properties of CO₂ hydrates is essential for their applications in carbon sequestration and refrigeration, yet remains challenging with empirical forcefields. In this work, a deep potential machine learning potential for CO₂ hydrate, trained on density functional theory datasets, is for the first time developed to serve as a unified and accurate computational framework. The as-developed deep potential machine learning potential achieves near-density functional theory accuracy in energy, force, and virial stress predictions while enabling large-scale molecular dynamics simulations at significantly reduced computational cost. Uniaxial stress-strain analyses demonstrate that the model captures the tensile strength and progressive ductile-like failure behavior. Thermal conductivity prediction agrees closely with experimental measurements within 2% deviation, outperforming empirical forcefields. Vibrational dynamics and phonon analyses reveal that the deep potential machine learning potential more accurately describes the anharmonicity and phonon scattering, especially in high-frequency modes, yielding physically realistic thermal transport behavior. This work establishes deep potential machine learning potential as a robust tool for advancing CO₂ hydrate-based technologies by providing a path for accurate and efficient multi-property prediction.
Document Type: Original article
Cited as: Xiong, K., Li, Y., Lin, Z., Luo, G., Wu, J. Machine learning potential insights into mechanical response and heat transfer in CO₂ hydrate. Advances in Geo-Energy Research, 2025, 18(1): 38-50. https://doi.org/10.46690/ager.2025.10.04
DOI:
https://doi.org/10.46690/ager.2025.10.04Keywords:
CO2 hydrate, mechanical properties, thermal conductivity, deep potential, molecular dynamicsReferences
Abascal, J. L. F., Sanz,E., Garcia Fernandez, R., et al.A potential model for the study of ices and amorphous water: TIP4P/Ice. The Journal of Chemical Physics, 2005, 122(23):234511.
Abascal,J.L. F.Vega,C.A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of Chemical Physics, 2005,123(23):234505.
Arora, R. Basu, A.. Mianiy. ., t a derstandingde p ral networks with rectified linear units. Paper presented at International Conference on Learning Representations, 2018, Vancouver, Canada.
Bell,_R.J.,Dean,P. Atomic vibrations in vireous silica. Discussions of the Faraday Society, 1970,50:55-61.
Berendsen,H.J.C., Grgera,J. R., Sratsma, T. P.The missing term in efective pair potentials. The Journal of Physical Chemistry, 1987,91(24):6269-6271
Chen, L. Sun,C., Chen,G., et al.Measurements of hydrate equilibrium conditions for CH4, CO2, and CH4+C2H6+ CgHs in various systems by step-heating method.Chinese Journal of Chemical Engineering, 2009, 17(4):635-641.
Dickey, J. M,Paskin, A.Computer simlation of the latice dynamics of solids. Physical Review, 1969, 188(3):14071418.
Hafner,J.Ab-initio simulations of materials using vasp: Density-functional theory and beyond. Journal of Computational Chemistry, 2008, 29(13):2044-2078.
Hagler, A. T.,Lifson,S. Dauber,P. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals.2.A benchmark for the objective comparison of alternative force fields. Journal of the American Chemical Society, 1979,101(18):5122-5130.
Harris, J.G.,Yung,K.H.Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. The Journal of Physical Chemistry, 1995,99(31):12021-12024.
Hassanpouryouzband, A.J Jonak, F., asreghni Frahani, M,et al. Gas hydrates in sustainable chemistry. Chemical Society Reviews, 2020,49(15):5225-5309.
Homn, H.W. Swope,W.C. Pitera,J.W.eta.Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.The Journal of Chemical Physics, 2004,120(20):9665-9678.
Jia, J., Liang, Y., Tsuji, T., et al. Elasticity and stability of clathrate hydrate: Role of guest molecule motions. Scientific Reports, 2017, 7(1): 1290.
Jiang, H., Jordan, K. D. Comparison of the properties of xenon, methane, and carbon dioxide hydrates from equilibrium and nonequilibrium molecular dynamics simulations. The Journal of Physical Chemistry C, 2010, 114(12): 5555-5564.
Jiao, L.-J., Wan, R.-C., Wang, Z.-L. Experimental investigation of CO2 hydrate dissociation in silica nanoparticle system with different thermal conductivity. International Journal of Thermophysics, 2021, 42(12): 170.
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., et al. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 1983, 79(2): 926-935.
Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
Kang, S. P., Lee, H., Lee, C. S., et al. Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran. Fluid Phase Equilibria, 2001, 185(1): 101-109.
Kresse, G., Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Computational Materials Science, 1996, 6(1): 15-50.
Li, J., Ying, P., Liang, T., et al. Mechanical and thermal properties of graphyne-coated carbon nanotubes: A molecular dynamics simulation on one-dimensional all-carbon van der waals heterostructures. Physical Chemistry Chemical Physics, 2023, 25(12): 8651-8663.
Li, Y., Xiong, K., Qu, Y., et al. Effects of guest molecular occupancy and electric field on thermal conductivity of CO2 hydrates. The Journal of Chemical Physics, 2025, 163(8): 084504.
Liang, T., Jiang, W., Xu, K., et al. Pysed: A tool for extracting kinetic-energy-weighted phonon dispersion and lifetime from molecular dynamics simulations. Journal of Applied Physics, 2025, 138(7): 075101.
Liang, T., Zhou, M., Zhang, P., et al. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. International Journal of Heat and Mass Transfer, 2020, 151: 119395.
Lin, Y., Liu, Y., Xu, K., Li, T., Zhang, Z., Wu, J. Strengthening and weakening of methane hydrate by water vacancies. Advances in Geo-Energy Research, 2022, 6(1): 23-37.
Liu, J. J., Fu, R., Lin, Y. W., et al. Mechanical destabilization and cage transformations in water vacancy-contained CO2 hydrates. ACS Sustainable Chemistry & Engineering, 2022, 10(31): 10339-10350.
Liu, N., Hong, C., Liu, X. Effects of nanoparticles on CO2 hydrate thermal conductivity. CIESC Journal, 2017, 68(9): 5.
Liu, T.-S., Liu, N., Hong, C.-F. Molecular dynamics simulation of thermal conductivity of CO2 hydrate. Journal of Atomic and Molecular Physics, 2021, 38(4): 6.
Lu, C., Qin, X., Sun, J., Wang, R., Cai, J. Research progress and scientific challenges in the depressurization exploitation mechanism of clayey-silt natural gas hydrates in the northern South China Sea. Advances in Geo-Energy Research, 2023, 10(1): 14-20.
Luo, K., Shen, Y., Li, J., et al. Pressure-induced stability of methane hydrate from machine learning force field simulations. The Journal of Physical Chemistry C, 2023, 127(15): 7071-7077.
Martinez, J. A., Yilmaz, D. E., Liang, T., et al. Fitting empirical potentials: Challenges and methodologies. Current Opinion in Solid State and Materials Science, 2013, 17(6): 263-270.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1-19.
Potoff, J. J., Siepmann, J. I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal, 2001, 47(7): 1676-1682.
Schober, H., Itoh, H., Klapproth, A., et al. Guest-host coupling and anharmonicity in clathrate hydrates. The European Physical Journal E, 2003, 12(1): 41-49.
Shi, Q., Cao, P., Han, Z., et al. Role of guest molecules in the mechanical properties of clathrate hydrates. Crystal Growth & Design, 2018, 18(11): 6729-6741.
Song, Z., Li, Y., Shi, Q., et al. Diffusion, mechanical and thermal properties of sT hydrogen hydrate by machine learning potential. Journal of Physics: Condensed Matter, 2025, 37(11): 115102.
Sun, Z., Wang, Y., Li, W., et al. A high accuracy machinelearning potential model for Mo-Re binary alloy. Computational Materials Science, 2025, 254: 113870.
Takeuchi, F., Hiratsuka, M., Ohmura, R., et al. Water proton configurations in structures I, II, and H clathrate hydrate unit cells. The Journal of Chemical Physics, 2013, 138(12): 124504.
Targ, S., Almeida, D., Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029, 2016.
Thomas, J. A., Turney, J. E., Iutzi, R. M., et al. Predicting phonon dispersion relations and lifetimes from the spectral energy density. Physical Review B, 2010, 81(8): 081411.
Tse, J. S., Klug, D. D., Zhao, J. Y., et al. Anharmonic motions of Kr in the clathrate hydrate. Nature Materials, 2005, 4(12): 917-921.
Udachin, K. A., Ratcliffe, C. I., Ripmeester, J. A. Structure, Dynamics and Ordering in Structure I Ether Clathrate Hydrates from Single-Crystal X-ray Diffraction and 2H NMR Spectroscopy. The Journal of Physical Chemistry B, 2007, 111(39): 11366-11372.
Wan, L., Liang, D., Li, D., et al. Characteristics of thermal conductivity and thermal diffusivity of carbon dioxide hydrate. CIESC Journal, 2016, 67(10): 7.
Wan, L. H., Liang, D. Q., Guan, J. A. Molecular dynamics study of thermal conduction in carbon dioxide hydrates. Advanced Materials Research, 2014, 1008-1009: 861-872.
Wang, H., Zhang, L. F., Han, J. Q., et al. Deepmd-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Computer Physics Communications, 2018, 228: 178-184.
Warrier, P., Naveed Khan, M., Carreon, M. A., et al. Integrated gas hydrate-membrane system for natural gas purification. Journal of Renewable and Sustainable Energy, 2018, 10(3): 034701.
Xia, Y., Elsworth, D., Xu, S., et al. Pore-scale gas–water twophase flow and relative permeability characteristics of disassociated hydrate reservoir. Petroleum Science, 2025, 22(8): 3344-3356.
Xie, S. R., Rupp, M., Hennig, R. G. Ultra-fast interpretable machine-learning potentials. npj Computational Materials, 2023, 9(1): 162.
Xu, K., Hao, Y., Liang, T., et al. Accurate prediction of heat conductivity of water by a neuroevolution potential. The Journal of Chemical Physics, 2023, 158(20): 204114.
Xu, K., Liang, T., Zhang, Z., et al. Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS2. Nanoscale, 2022, 14(4): 1241-1249.
Xu, K., Yang, L., Liu, J., et al. Mechanical properties of CH4CO2 heteroclathrate hydrates. Energy & Fuels, 2020, 34(11): 14368-14378.
Yin, Z., Zheng, J., Kim, H., et al. Hydrates for cold energy storage and transport: A review. Advances in Applied Energy, 2021, 2: 100022.
Ying, P. H., Liang, T., Xu, K., et al. Sub-micrometer phonon mean free paths in metal-organic frameworks revealed by machine learning molecular dynamics simulations. ACS Applied Materials & Interfaces, 2023, 15(30): 36412-36422.
Zeng, J., Liang, T., Zhang, J., et al. Correlating young’s modulus with high thermal conductivity in organic conjugated small molecules. Small, 2024, 20(21): 2309338.
Zhang, F., Ni, H., Wang, Y., et al. Molecular dynamics study on mechanical properties of CO2-N2 heteroclathrate hydrates. Crystal Growth & Design, 2023, 23(4): 2239-2247.
Zhang, J., Fu, H. -Q., Guo, M. -Z., et al. New insights into the deposition of natural gas hydrate on pipeline surfaces: A molecular dynamics simulation study. Petroleum Science, 2024a, 21(1): 694-704.
Zhang, Y., Liu, X. T., Shi, Q., et al. Mechanical properties and cage transformations in CO2-CH4 heterohydrates: A molecular dynamics and machine learning study. Journal of Physics D-Applied Physics, 2024b, 57(46): 465302.
Zhang, Y., Song, Z. X., Lin, Y. W., et al. Predicting mechanical properties of CO2 hydrates: Machine learning insights from molecular dynamics simulations. Journal of Physics-Condensed Matter, 2024c, 36(1): 015101.
Zhang, Y., Wang, H., Chen, W., et al. Dp-gen: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Computer Physics Communications, 2020, 253: 107206.
Zhang, Z., Duan, Z. An optimized molecular potential for carbon dioxide. The Journal of Chemical Physics, 2005, 122(21): 214507.
Zhou, M., Liang, T., Wu, B., et al. Phonon transport in antisite-substituted hexagonal boron nitride nanosheets: A molecular dynamics study. Journal of Applied Physics, 2020, 128(23): 234304.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.