On the mobility reduction factor for the quantification of foam strength in porous media

Authors

  • Gabriel Brandão de Miranda Computational Modeling Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900 , Brazil; Computer Science Department, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
  • Grigori Chapiro Computational Modeling Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900 , Brazil; Mathematics Department, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
  • Rodrigo Weber dos Santos Computational Modeling Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900 , Brazil; Computer Science Department, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
  • Bernardo Martins Rocha Computational Modeling Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900 , Brazil; Computer Science Department, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil (Email: bernardomartinsrocha@ufjf.br)

Abstract

Foam effects in multiphase flow are commonly modeled as a mobility reduction factor that scales gas mobility. Conventional parameter estimation relies on prior relative permeability functions, introducing epistemic uncertainties that propagate to foam characterization. In this work, an alternative mobility reduction factor formulation expressed solely in terms of pressure drop measurements is derived, eliminating the need for relative permeability assumptions and directly aligning with the modeling hypothesis of gas-only mobility reduction. The approach is evaluated using synthetic foam-quality scan datasets at multiple surfactant concentrations. Profile likelihood analysis shows that the proposed formulation preserves parameter identifiability relative to conventional methods based on apparent viscosity. Robustness is assessed under both correct and misspecified relative permeability models, with the Lomeland-Ebeltoft-Thomas formulation used for data generation and Brooks-Corey curves for parameter estimation. Systematic sampling of relative permeability parameters further demonstrates that, even when the model structure is correct, the proposed mobility reduction factor reduces estimation errors by confining uncertainties to the foam component only. These results establish the new mobility reduction factor definition as a reliable and practical metric for quantifying foam strength in laboratory experiments and for improving parameter estimation in implicit-texture models.

Document Type: Original article

Cited as: de Miranda, G. B., Chapiro, G., dos Santos, R. W., Rocha, B. M. On the mobility reduction factor for the quantification of foam strength in porous media. Advances in Geo-Energy Research, 2025, 19(1): 43-57. https://doi.org/10.46690/ager.2026.01.04

DOI:

https://doi.org/10.46690/ager.2026.01.04

Keywords:

Mobility reduction factor, foam flow, relative permeability, parameter estimation, porous media

References

Alcorn, Z. P., Sæle, A., Karakas, M., et al. Unsteady-state CO2 foam generation and propagation: Laboratory and field insights. Energies, 2022, 15(18): 6551.

AlYousef, Z., Gizzatov, A., AlMatouq, H., et al. Assessment of foam generation and stabilization in the presence of crude oil using a microfluidics system. Journal of Petroleum Exploration and Production Technology, 2023, 13(4): 1155-1162.

Amirmoshiri, M., Zeng, Y., Chen, Z., et al. Probing the effect of oil type and saturation on foam flow in porous media: Core-flooding and nuclear magnetic resonance (NMR) imaging. Energy & Fuels, 2018, 32(11): 11177-11189.

Bello, A., Ivanova, A., Rodionov, A., et al. An experimental study of high-pressure microscopy and enhanced oil recovery with nanoparticle-stabilised foams in carbonate oil reservoir. Energies, 2023, 16(13): 5120.

Berg, S., Dijk, H., Unsal, E., et al. Simultaneous determination of relative permeability and capillary pressure from an unsteady-state core flooding experiment? Computers and Geotechnics, 2024, 168: 106091.

Berg, S., Unsal, E., Dijk, H. Sensitivity and uncertainty analysis for parameterization of multiphase flow models. Transport in Porous Media, 2021, 140: 27-57.

Bernard, G. G., Jacobs, W. L. Effect of foam on trapped gas saturation and on permeability of porous media to water. Society of Petroleum Engineers Journal, 1965, 5(4): 295-300.

Bond, D. C., Holbrook, O. C. Gas drive oil recovery process. US2866507, 1956.

Brooks, R. H., Corey, A. T. Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE, 1964, 7: 26-28.

Cavalcante Filho, J. S. A., Delshad, M., Sepehrnoori, K. Estimation of foam-flow parameters for local equilibrium methods by use of steady-state flow experiments and optimization algorithms. SPE Reservoir Evaluation & Engineering, 2017, 21(1): 160-173.

Chang, S. H., Grigg, R. Foam displacement modeling in CO2 flooding processes. Paper SPE 35401 Presented at SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 21-24 April, 1996.

de Miranda, G. B., dos Santos, R. W., Chapiro, G., et al. Uncertainty quantification on foam modeling: The interplay of relative permeability and implicit-texture foam parameters. Transport in Porous Media, 2024, 152: 8.

de Miranda, G. B., Ribeiro, L. S., Façanha, J. M. D. F., et al. Characterization of foam-assisted water-gas flow via inverse uncertainty quantification techniques. Paper Presented at Computational Science – ICCS 2022, London, UK, 21-23 June, 2022.

de Moura Ribeiro, A., Lopes, L. F., Rocha, B. M., et al. Quantifying experimental impacts on non-newtonian foam characterization for flow modeling in porous media: Insights from foam-quality and flow rate scan experiments. Water Resources Research, 2025, 61(9): e2024WR039536.

Eftekhari, A. A., Farajzadeh, R. Effect of foam on liquid phase mobility in porous media. Scientific Reports, 2017, 7(1): 43870.

Farajzadeh, R., Lotfollahi, M., Eftekhari, A. A., et al. Effect of permeability on foam-model parameters and the limiting capillary pressure. Paper cp-445-00044 Presented at IOR 2015 - 18th European Symposium on Improved Oil Recovery, Dresden, Germany, 14-16 April, 2015.

Hematpur, H., Hosseini, S., Mahmood, S. M., et al. A new approach to foam flooding modelling with novel parameter estimation techniques. Scientific Reports, 2025, 15: 22829.

Iman, R. L., Conover, W. J. A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics - Simulation and Computation, 1982, 11(3): 311-334.

Jia, H., Yu, H., Wang, T., et al. Investigation of non-chemical CO2 microbubbles for enhanced oil recovery and carbon sequestration in heterogeneous porous media. Geoenergy Science and Engineering, 2024, 242: 213229.

Jones, S. A., Laskaris, G., Vincent-Bonnieu, S., et al. Effect of surfactant concentration on foam: From coreflood experiments to implicit-texture foam-model parameters. Journal of Industrial and Engineering Chemistry, 2016, 37: 268-276.

Kahrobaei, S., Farajzadeh, R. Insights into effects of surfactant concentration on foam behavior in porous media. Energy & Fuels, 2019, 33(2): 822-829.

Kapetas, L., Vincent-Bonnieu, S., Danelis, S., et al. Effect of temperature on foam flow in porous media. Journal of Industrial and Engineering Chemistry, 2016, 36: 229-237.

Kovscek, A. R., Radke, C. J. Fundamentals of foam transport in porous media. California, Lawrence Berkeley Laboratory, 1994.

Lake, L. W. Enhanced Oil Recovery. Prentice Hall Inc., Old Tappan, USA, 1988.

Lomeland, F., Ebeltoft, E., Thomas, W. H. A new versatile relative permeability correlation. Paper Presented at International symposium of the society of core analysts, Toronto, Canada, 21-25 August, 2005.

Lotfollahi, M., Farajzadeh, R., Delshad, M., et al. Comparison of implicit-texture and population-balance foam models. Journal of Natural Gas Science and Engineering, 2016, 31: 184-197.

Ma, K., Lopez-Salinas, J. L., Puerto, M. C., et al. Estimation of parameters for the simulation of foam flow through porous media. part 1: The dry-out effect. Energy & Fuels, 2013, 27(5): 2363-2375.

Ma, K., Ren, G., Mateen, K., et al. Literature review of modeling techniques for foam flow through porous media. Paper SPE 169104 Presented at SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 12-16 April, 2014.

Ma, K., Ren, G., Mateen, K., et al. Modeling techniques for foam flow in porous media. SPE Journal, 2015, 20(3): 453-470.

Mehrabi, M., Sepehrnoori, K., Delshad, M. Displacement theory of low-tension gas flooding. Transport in Porous Media, 2022, 142(3): 475-491.

Mohammadi, S., Collins, J., Coombe, D. A. Field application and simulation of foam for gas diversion. Paper cp-10700055 Presented at IOR 1995 - 8th European Symposium on Improved Oil Recovery, Vienna, Austria, 15-17 May, 1995.

Osterloh, W. T., Jante, M. J. Effects of gas and liquid velocity on steady-state foam flow at high temperature. Paper SPE 24179 Presented at SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, 22-24 April, 1992.

Price, K. V. Differential Evolution, in Handbook of Optimization: From Classical to Modern Approach, edited by I. Zelinka, V. Snášel, A. Abraham, Springer, Berlin, Heidelberg, pp. 187-214, 2013.

Raue, A., Kreutz, C., Maiwald, T., et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 2009, 25(15): 1923-1929.

Ribeiro, L. S., Miranda, G. B., Rocha, B. M., et al. On the identifiability of relative permeability and foam displacement parameters in porous media flow. Water Resources Research, 2024, 60(3): e2023WR036751.

Rosman, A., Kam, S. I. Modeling foam-diversion process using three-phase fractional flow analysis in a layered system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31(11): 936-955.

Rossen, W. R. Foams in Enhanced Oil Recovery. Routledge, London, UK, 1996.

Sæle, A., Graue, A., Alcorn, Z. P. Unsteady-state CO2 foam injection for increasing enhanced oil recovery and carbon storage potential. Advances in Geo-Energy Research, 2022, 6(6): 472-481.

Shafiei, M., Kazemzadeh, Y., Escrochi, M., et al. A comprehensive review direct methods to overcome the limitations of gas injection during the eor process. Scientific Reports, 2024, 14(1): 7468.

Sharma, M., Alcorn, Z. P., Fredriksen, S. B., et al. Model calibration for forecasting CO2-foam enhanced oil recovery field pilot performance in a carbonate reservoir. Petroleum Geoscience, 2020, 26(1): 141-149.

Simjoo, M., Dong, Y., Andrianov, A., et al. Novel insight into foam mobility control. SPE Journal, 2013, 18(3): 416-427.

Sri-Hanamertani, A., Saraji, S., Piri, M. The effects of InSitu emulsion formation and superficial velocity on foam performance in high-permeability porous media. Fuel, 2021, 306: 121575.

STARS, C. Stars user guide, 2017.

Storn, R., Price, K. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341-359.

Tripathi, R., Alcorn, Z. P., Graue, A., et al. Combination of non-ionic and cationic surfactants in generating stable CO2 foam for enhanced oil recovery and carbon storage. Advances in Geo-Energy Research, 2024, 13(1): 42-55.

Valdez, A. R., Rocha, B. M., Chapiro, G., et al. Uncertainty quantification and sensitivity analysis for relative permeability models of two-phase flow in porous media. Journal of Petroleum Science and Engineering, 2020, 192: 107297.

Valdez, A. R., Rocha, B. M., Chapiro, G., et al. Assessing uncertainties and identifiability of foam displacement models employing different objective functions for parameter estimation. Journal of Petroleum Science and Engineering, 2022a, 214: 110551.

Valdez, A. R., Rocha, B. M., Façanha, J. M., et al. Foam-assisted water-gas flow parameters: From core-flood experiment to uncertainty quantification and sensitivity analysis. Transport in Porous Media, 2022b, 144: 189-209.

Vicard, A., Atteia, O., Bertin, H., et al. Estimation of local equilibrium foam model parameters as functions of the foam quality and the total superficial velocity. ACS Omega, 2022, 7(20): 16866-16876.

Vieira, R. A. M., Dos Santos, S. S. F., Do Nascimento, L. P. T., et al. Experimental characterization to support a fawag project in an offshore pre-salt field. Paper SPE 218195 Presented at SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, 22-25 April, 2024.

Wang, Z., Li, S., Xu, Z., et al. Advances and challenges in foam stability: Applications, mechanisms, and future directions. Capillarity, 2025, 15(3): 58-73.

Zavala, R. Q., Lozano, L. F., Chapiro, G. Traveling wave solutions describing the foam flow in porous media for low surfactant concentration. Computational Geosciences, 2024, 28(2): 323-340.

Zeng, Y., Muthuswamy, A., Ma, K., et al. Insights on foam transport from a texture-implicit local-equilibrium model with an improved parameter estimation algorithm. Industrial & Engineering Chemistry Research, 2016, 55(28): 7819-7829.

Downloads

Download data is not yet available.

Downloads

Published

2025-12-22

How to Cite

Miranda, G. B. de, Chapiro, G., Santos, R. W. dos, & Rocha , B. M. (2025). On the mobility reduction factor for the quantification of foam strength in porous media. Advances in Geo-Energy Research, 19(1), 43–57. https://doi.org/10.46690/ager.2026.01.04